
esProc
Professional high-
performance computing
engine

Issued by Raqsoft

Automated modeling and prediction in SPL

This PPT focuses on three aspects - environment settings for modeling
software, model building and data prediction. There are detailed examples
for illustrating the modeling process, data requirements, model performance
information, model selection, data prediction based on model files or the
selected model object, and prediction result output. A good knowledge of
these lets you make the best use of the Auto-Modeling tool to perform data
mining analysis in esProc.

Introduction

1 Preface
2 Environment settings
3 Data modeling
 3.1 Modeling flowchart
 3.2 SPL modeling example
 3.3 Modeling data
 3.4 Variable properties
 3.5 Modeling parameter
settings
 3.6 Model information
 3.7 Modeling result

Content

4 Data prediction
 4.1 Prediction flowchart
 4.2 SPL prediction examples
 4.3 Predictive model object
 4.4 Prediction result

5 Summary

1 Preface

The flourishing internet economy has changed the business decision-
making mode forever. Data, particularly the big data, has become
the critical basis of making right decisions. Correct and coherent
data flow is the key in making decisions fast and flexibly. In this
context, business modeling emerges as AI is becoming a pressing
demand.

Adhering to the design concept of "intelligent, efficient and easy
to use", YModel creates an innovative process of "data – model
–prediction – application". With the support of big data
processing techniques and exclusive algorithm engine, it builds an
intelligent and easy-to-use AI analysis and application platform to
help businesses improve modeling efficiency and reduce modeling
cost.

The longest journey begins with the first step. To open up a new
world of big data processing, SPL Auto-Modeling is a good start.

2 Environment settings

SPL Modeling is composed of YModel Auto-Modeling software and esProc SPL external library YModelCli. The

two parts are connected through configuration file userconfig.xml.

A. Install YModel
Download YModel installation package HERE.

Install the software and record the installation directory, such as C:\Program Files\raqsoft\ymodel.

2 Environment settings

B. Install external
library

The default installation
path is
esProc\extlib\YModelCli
under esProc SPL. Then
check the YModelCli
option in esProc external
library settings to take
effect.

2 Environment settings

C. Set number of
multithreads

You can set
parallel limit as
64 for
multithreaded data
modeling

2 Environment settings

C. configuration file: The SPL modeling application requires appropriate parameter
configurations in userconfig.xml file under the external library directory
esProc\extlib\YModelCli.

Option Name Note

sAppHome C:\Program Files\raqsoft\ymodel A p p l i c a t i o n
directory

sLicenseFile D:\backup\OneDrive\priv\ymodel_lic.xml YModel license

sEsprocLicenseFile D:\backup\OneDrive\priv\esproc_lic.xml esProc license

sPythonHome c:\Program Files\raqsoft\ymodel\Python37\
python.exe

P y t h o n f i l e (f o r
Windows)

/raqsoft/ymodel/Python37/bin/python3.7 (for Linux)

bAutoDecideImpute true I n t e l l i g e n t
imputation

iPythonProcessNumber 2 N u m b e r o f P y t h o n
processes

iResampleMultiple 150 Resampling frequency

sAppHome is YModel installation directory.

3 Data modeling

3.1 Modeling flowchart

Basic process: load data -> set parameters -> perform model building ->
view result

Model object: A model object is generated after model building is finished
and saved as a pcf file. The model object bridges model building and data
prediction, and is the basis of the latter.
Data prediction：Predict data to produce prediction result.

Load modeling data

Environment
settings

Model properties

Set parameters
Model

building

Model performance

Model description

Variable importance
Model object

Model performance

Result data

Predict data

3.2 SPL modeling example

 A Note

1 =file("train.csv").import@tqc() Modeling data

2 =ym_env() Initialize environment

3 =ym_model(A2, A1) Load data

4 =ym_target(A3, "Survived") Set target variable

5 =ym_setparam(A3, "intelligence":true, "Balance":2) Set modeling parameters

6 =ym_statistics(A3,"Age") Get variable properties

7 =ym_build_model(A3) Get through the model building
process

8 =ym_save_pcf(A7, "demo.pcf") Save model object as file

9 =ym_json(A7) Export model information as
JSON string

10 =ym_importance(A7) Get variable importance

11 =ym_present(A7) Get model description

12 =ym_performance(A7) Get model performance

13 >ym_close(A2) Close YModel

The main parts of modeling process are highlighted in yellow. A8 saves the modeling result
as a pcf file, which can be used to predict data; A9-A12 outputs model-related information.

3.3 Modeling data

Data used for model building must be structured data. It can come from relational
databases, text files, table sequence, CSV files, etc.
Below is a CSV file:

The first row in the file contains field name information. The other rows are
records.
YModel supports access of diverse types of data source and manages all accesses
in a uniform way, This ensures a broad data base and coherent data flow.
The data preprocessing covers a series of operations from missing value and high-
cardinality variable handling, data smoothing, variable filtering, computed
variable derivation to data cleaning such as DOC variable.

3.4 Variable properties

Return the statistical
information of a
specified variable,
including the maximum
value, minimum value,
importance, missing
value rate and
skewness, to help
perform data
exploration & analysis.
Take the Age variable
as an example, the
returned information is
shown on the left:

Name Value
VarName Age
Miss 0.2102728731942215
Imp 0.0
Card 0
GraphData
GroupDescStatisticsTable

GroupFrequencyTable

Upquar 38.0
Median 28.0
Lwquar 21.0
Sd 14.378831499148678
Max 71.0
Min 0.75
Avg 29.78048780487805
Sk 0.3387264693285246
OuterValues [64.0,64.0,65.0,65.0,65.0,66.0,70.5,71.0,71.0]

Pearson NaN
Spearman NaN
Target0 0
Target1 1
bGraphStatistics true
bStatistics true
bTargetStatistics true

3.5 Modeling parameter settings

Set parameters for the modeling variables. Below are descriptions of relevant parameters: (Refer to
YModel JSON-style Parameter Guide for detailed rules.)

Key Value Type Description

balance int Balance parameters

Target String Target variable name

id String ID variable name

intelligence Boolean
use intelligent-imputation or not

misformat String Missing value format

optimal Boolean Use optimal parameter configuration or not

parallel int Number of parallel threads for data preprocessing

resample Boolean Resample or not

resamplemul int
Resampling multiple

resamplenum int
Resampling frequency

testpercent int
Test data Percentage(0-99)

vartypes ArrayList< Byte>
Variable types

ModelFields ArrayList<String>
Field name order for model building

3.6 Model information

Model information mainly includes model description, model performance and variable importance. They can
be exported as JSON strings through the ym_json() interface.
A. Model description
YModel Auto-Modeling encapsulates a variety of algorithms. Algorithms used for building the current model
and related model parameters will be returned.

3.6 Model information

B. Model performance
It refers to the performance-related information, such as Gini, AUC, KS index, etc.

3.6 Model information

C. Variable importance
Importance of each variable.

3.6 Model information

D. Modeling result
One or more model objects are generated after model building is finished and saved as pcf model file(s).
The model object links model building and data prediction and provides necessary files for data
prediction. The prediction process can start directly from loading a model file.

Modeling Model object

Predict

Model performance

Model description

Variable importance
degree

4 Data prediction

4.1 Prediction flowchart

Basic process: load model file -> predict data -> view result

Environment
settings Model

performance

Model
description

Variable
importance

Model
performance

Result data
Predict

data

Model
object

Load
model file

4.2 SPL prediction example

4.2.1 SPL prediction example: Prediction that returns a table sequence

 A Note

1 =ym_env() Initialize environment

2 =ym_load_pcf("demo.pcf") Load model object from the pcf model file

3 =file("D:/dev/test.csv").import@tqc() Load the to-be-predicted data from a file and
return a table sequence

4 =ym_predict(A2, A3(1)) Perform data prediction and return prediction
result

5 >ym_close(A1) Exit YModel

A2 loads the pcf model file resulted from model building. A4 performs data prediction and
returns prediction result.

A4 returns prediction result:

4.2 SPL prediction example

4.2.2 SPL prediction example: Batch prediction that collects model performance at the same time

 A Note

1 =ym_env() Initialize environment

2 =ym_load_pcf("demo.pcf") Load model object from the pcf model file

3 =file("D:/dev/test.csv").import@tqc() Load to-be-predicted data from a file and return a table
sequence

4 =ym_predict(A2, A3) Perform data prediction and return prediction result

5 =ym_result(A4) Return prediction result as a table sequence

6 =ym_json(A4) When the to-be-predicted data is no less than 20 records
for a batch prediction, the function will output JSON-
format model performance information according to the
data evaluation

7 >ym_close(A1) Exit YModel

A2 loads the pcf model file resulted from model building. A4 performs data prediction and returns prediction result.

环境

4.2 SPL prediction example

4.2.3 SPL prediction example: concurrency-based prediction that returns a table sequence. Use the
number of parallel threads configured in "Environment variable" it is not specified.

 A B Note

1 =ym_env() >b=0 Initialize environment

2 =ym_load_pcf("demo.pcf") Load model object from the pcf model file

3 =file("D:/dev/test.csv").import@
tqc()

Load to-be-predicted data from a file and return a table
sequence

4 =3.(5.(b=b+1)) Generate a sequence 3 rows, each of which contains 5
numbers

5 =A4.(~.(A3.select(#==A4.~.~)(1))) Get corresponding records from A3 according to A4's values

6 fork A5 =ym_predict@m
(A2, A6)

Use @m to predict data with multithreaded processing and
return prediction result as a table sequence

7 >ym_close(A1) Exit YModel

A4
Index Member

1 [1,2,3,…]
2 [6,7,8,…]
3 [11,12,13,…]

A5
Index Member

1 [[1,0,3,…],[2,1,1,…],…]
2 [[6,0,3,…],[7,0,1,…],…]
3 [[11,0,3,…],[12,1,1,…],…]

PassengerId Survived Pclass Name …
1 0 3 Braund, Mr. … …
2 1 1 Cumings, Mrs. Jo… …
3 1 3 Heikkinen, Miss. … …
4 1 1 Futrelle, Mrs… …
5 0 5 Allen, Mr. Willi… …

Click
to view
details

4.2 SPL prediction example

4.2.3 SPL prediction example: concurrency-based prediction that returns a table sequence.

The regular prediction and concurrency-based prediction won't collect model performance
information but directly return prediction result as a table sequence.

A6
Index Member

1 [[0.012333514168858528,1,0,…],…]
2 [[0.010902988724410534,6,0,…],…]
3 [[0.015815628692507744,11,1,…],…]

Embarked_predictvalue PassengerId Survived Pclass Name Sex Age SibSp Parch …
0.012333514168858528 1 0 3 Braund, Mr. Owen… male 22 1 0 …
0.7790963053703308 2 1 1 Cumings, Mrs. John… female 38 1 0 …

0.01020282693207264 3 1 3 Heikkinen, Miss. Laina female 26 0 0 …
0.019768988713622093 4 1 1 Futrelle, Mrs. Jacqu… female 35 1 0 …
0.002912132302299142 5 0 3 Allen, Mr. William… male 35 0 0 …

Click to view details

Prediction result：

4.2 SPL prediction example

4.2.4 SPL prediction example: concurrency-based prediction for which waiting time should be configured
and that returns a table sequence.

 A B Note

1 =ym_env() Initialize environment

2 =ym_load_pcf("demo.pcf") Load model object from the pcf model file

3 =file("D:/dev/test.csv").import@tqc() Loadto-be-predicted data from a file and return
a table sequence

4 =A3.to(100) Get 100 records
5 fork A4 =ym_predict@m(A2,A5,100) Use @m to predict data with multithreaded

processing and then perform aggregation during
the specified 100 milliseconds, and return
prediction result as a table sequence

6 =A5.conj() Concatenate result table sequences returned by
threads

7 >ym_close(A1) Exit YModel

A6 Index PassengerId Survived Pclass Name …
1 1 0 3 Braund, Mr. … …
2 2 1 1 Cumings, Mrs. Jo… …
3 3 1 3 Heikkinen, Miss. … …
4 4 1 1 Futrelle, Mrs… …
5 5 0 5 Allen, Mr. Willi… …

4.3 Predictive model object

Load model file

The ym_load_pcf()interface generates a predictive model object according the
loaded model file. Based on the same model file, a predictive model object and the
model object generated by the model building process have same functionalities.
Users can use the predictive model object to predict data, or get relevant model
information, such as model description and model performance.

4.4 Prediction result

Predict valid data according to the predictive model and generate prediction result.
The data to be predicted can come from databases, table sequences, CSV files, etc.
A. Prediction result
Return prediction result:

4.4 Prediction result

B. Model performance
When the to-be-predicted data contains target variables, users can view model performance
according to the prediction result. This functionality gets model performance from the
prediction result. We can evaluate the model quality, which is described by Gini, AUC, KS or
others,by comparing the model performance here with that in the model file. The model
performance can be exported to a JSON-style file.

5 Summary

SPL Auto-Modeling Process combines the user's statistical knowledge and algorithm techniques
with the business requirements through simple and convenient operation.
Below is the modeling process flowchart:

Environment
settings

Modeling ResultPredictionModel
object

Load model
file

Load
modeling data

