Data Mining

Table of Contents

Chapter 1 The concept of data mining

Chapter 2 Data exploration

Chapter 3 Data pre-processing and modeling

Chapter 4 Prediction

Chapter 5 Model evaluation and business application

Pre class preparation

Exercise data

Tool

Download and install Raqsoft YModel

Pre class preparation (exercise data and tool download address)

Exercise data

Titanic.csv

Download of YModel tool

http://c.raqsoft.com/tag/Download?t=%E6%98%93%E6%98%8E %E6%99%BA%E8%83%BD%E5%BB%BA%E6%A8%A1

Chapter 1 The concept of data mining

Data mining is a process of extracting hidden, unknown and potentially useful information and knowledge from a large number of incomplete, noisy, fuzzy and random practical application data.

Generally, when we transform information into value, we have to go through four levels: information, data, knowledge and value. Data mining is an important part in the process of finding knowledge from data.

In the evening, the road surface of the street is wet after a little rain, and the gentle breeze blows. Look up at the sunset glow in the sky. Well, tomorrow has fine weather. Go to the fruit stand, pick up a dark green watermelon with curled root and rustling sound, and look forward to enjoying it.

Can the machine help us finish this? The answer is: Yes.

- Experience usually exists in the form of data.
- The main content of data mining is to mine "knowledge" from historical data to create "model".
- In the new situations (uncut watermelon), the model will help us to judge (whether it is a good melon or not).

In terms of mathematical language that high school students can understand, the essence of modeling task is: According to some existing correspondence from input space X (such as {[color = dark green; root = curl up; knock = turbid sound], [color = black; root = curl up; knock = dull], [color = light white; root = stiff; knock = crisp]}) to output space Y (such as {good melon, bad melon, bad melon}), find a function $f: X \xrightarrow{f} Y$ to describe this correspondence, this function is the model we want.

With the model, it's easy to make predictions, it means, take a new set of x and use this function to calculate the y.

			va	riable
No	Color	Root	Knock	Status
1	Dark green	curl up	turbid	Good melon
2	Black	curl up	dull	Bad melon
3	Light white	stiff	crisp	Bad melon
4				.
Varia	able valu	е	l	abel

The reason why we are more accustomed to call the model as a model rather than a function is that it does not meet the certainty we usually expect from the function. Here, the same X may correspond to different Y (melons with the same color, root and knocking sound may be good or bad).

But how is the model built, in other words, how to find the function?

Think about how to make a person have the ability to judge whether a melon is good or bad? You need to practice with a batch of melons to get the characteristics (color, root, knocking, etc.) before you cut it, and then you can cut it to see whether it is good or not. Over time, this person will be able to learn to judge the quality of the melon by the characteristics of the melon before it is cut open.

Simply think that the more melons you use for practice, the more experience you can gain, and the more accurate your judgment will be in the future.

It's the same thing to do data mining with machines. We need to use historical data (melon used for practice) to build models, and the modeling process is also called training, and these historical data are called training datasets.

We usually say that training data should be organized into structured data before modeling, so what is structured data?

Structured data refers to data in two-dimensional form. The general feature is that data is in rows (also known as samples), one row of data represents the information of an entity, and the attributes (also known as fields) of each row of data are the same. It can come from databases, text, or file storage systems such as HDFS.

See the figure below for the data of predicting Titanic survivors:

Passengerl	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	C)	3 Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.25		S
2	1		1 Cumings, Mrs. John Bradley	female	38	1	0	PC 17599	71.2833	C85	С
3	1		3 Heikkinen, Miss. Laina	female	26	0	0	STON/O2.	7.925		S
4	1		1 Futrelle, Mrs. Jacques Heath	female	35	1	0	113803	53.1	C123	S
5	C)	3 Allen, Mr. William Henry	male	35	0	0	373450		ad	Unstructured
6	C)	3 Moran, Mr. James	male		0	0	330877	Dat	a	Data
7	C)	1 McCarthy, Mr. Timothy J	male	54	0	0	17463			

Obviously, the training dataset must have the target we care about (the quality of the melon), that is, the Y must have a value (the melon used for practice, its quality is known), which is called the target variable.

In the training data set, of course, there are also features to judge whether the melon is good or not, such as color, rooting, knocking sound, which are called feature variables.

In terms of structured data, target variables and feature variables are attributes or fields of data.

The target variables and feature variables of the predicted good melon and Titanic survivors are as follows:

Color	Root	Knock	Status	Passengerl	urvived	class	Name	Sex	Age	S	SibSp	Parch	Ticket	Fare	Cabin	Embarke
				1	0		3 Braund, Mr. Owen Harris	male		22	1		0 A/5 2117	1 7.25	5	S
Dark	curl up	turbid	Good	2	1		1 Cumings, Mrs. John Bradley	female		38	1		0 PC 1759	71.2833	C85	С
green			meion	3	1		3 Heikkinen, Miss. Laina	female		26	0		0 STON/O	2. 7.925	5	S
Black	curl up	dull	Bad	4	1		1 Futrelle, Mrs. Jacques Heath	female		35	1		0 11380	3 53.1	C123	S
			melon	5	0		3 Allen, Mr. William Henry	male		35	0		0 37345	0 8.05	,)	S
Light	stiff	crisp	Bad	6	0		3 Moran, Mr. James	male			0		0 33087	7 8.4583	}	Q
white		· ·	melon	7	0		1 McCarthy, Mr. Timothy J	male		54	0		0 1746	3 51.8625	E46	S

Target variable

Chapter 2 Data exploration

- 2.1 The significance of data exploration
- 2.2 Data type identification
- 2.3 Quantitative data exploration
- 2.4 Qualitative data exploration
- 2.5 Variable correlation analysis

2.1 The significance of data exploration

Using tools to view the characteristics of data

Perceive value

Understand the influence of feature variables on target variable and decide which variables to choose Understand data

Understand the statistical characteristics of variables and the correlation between variables

2.2 Data type identification

	Variable type	Description	Example
	Count variable	Variable with integer value	Class size:[45,67,53] Number of rooms :[2,5,6,7]
Quantitative data	Numerical variable	Variable with floating point value	Height:[175.5,180.4,165.3] Sales volume:[2300.87,1098,8]
	Time date variable	Variable representing time and date	Birthday:[2009-01-01] Login time:[2019/1/1 12:00:00,]
	Unary variable	Variable containing only one category (without missing values)	Household voltage :[220,220,] Sold or not (only recorded sold):[1,,1,1,,,,1]
Qualitative	Binary variable	Variable with only two categories (without missing values), which is often the target variable	Gender:[male, female] Sold or not :[1,0,1,1,0,0,0,1]
data	Categorical variable	Variables with more categories than two	Industry: [tourism, manufacturing, IT,] Annual income:[1(High),2(Medium),3(Low),]
	Text string variable	Variables with a length of more than 128 bytes and a very large number of classifications, which generally cannot be used directly and need to be transformed again	Story introduction:[Harry potter says:"", 'He is
	ID	A unique identifier for each record, which is usually useless.	ID:[110000198003198182, 130000197407258697,]

Exercise: using YModel to identify the data types of Titanic survival prediction data. Data: Titanic.csv

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.25		S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2. 3101282	7.925		S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803	53.1	C123	S
5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8.05		S
6	0	3	Moran, Mr. James	male		0	0	330877	8.4583		Q
7	0	1	McCarthy, Mr. Timothy J	male	54	0	0	17463	51.8625	E46	S
8	0	3	Palsson, Master. Gosta Leonard	male	2	3	1	349909	21.075		S

We take the Titanic survival prediction data on kaggle as an example, and use YModel to identify data types **1. Data preview**

Į	Load data											\times
	Preview data						Previe	w the top		100	line	es 🕂 Reload
•	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	1	0	3	Braund, Mr. Ow	male	22	1	0	A/5 21171	7.25		S 📩
	2	1	1	Cumings, Mrs. J	female	38	1	0	PC 17599	71.2833	C85	с
	3	1	3	Heikkinen, Miss	female	26	0	0	STON/02	7.925		s
	4	1	1	Futrelle, Mrs. Ja	female	35	1	0	113803	53.1	C123	S
	5	0	3	Allen, Mr. Willia	male	35	0	0	373450	8.05		S
	6	0	3	Moran, Mr. James	male		0	0	330877	8.4583		Q
	7	0	1	McCarthy, Mr. Ti	male	54	0	0	17463	51.8625	E46	S
U	8	0	3	Palsson, Master	male	2	3	1	349909	21.075		S
	9	1	3	Johnson, Mrs. O	female	27	0	2	347742	11.1333		S
	10	1	2	Nasser, Mrs. Ni	female	14	1	0	237736	30.0708		С
	11	1	3	Sandstrom, Mis	female	4	1	1	PP 9549	16.7	G6	S
	12	1	1	Bonnell, Miss. E	female	58	0	0	113783	26.55	C103	S
	13	0	3	Saundercock, M	male	20	0	0	A/5. 2151	8.05		S
	14	0	3	Andersson, Mr	male	39	1	5	347082	31.275		S
	15	0	3	Vestrom, Miss	female	14	0	0	350406	7.8542		S
	16	1	2	Hewlett, Mrs. (M	female	55	0	0	248706	16.0		S
	17	0	3	Rice Master Fu	male	2	А	1	282652	20 125		
								(<u>C</u> ancel	< Previous	Nex	t> <u>F</u> inish

K Detect variable type ×	
Detect variable types now	
 Detect all data 	
○ Detect top 1,000,000 ▲ lines	
 Do not detect (Can be detected later via "Detect variable data type" option) 	
Do not ask me again (can be set in options menu)	
2. Select detection data range	
3. Automatic identification of data types by YModel too	
Two fields, SibSp and Parch, ł	าลง

Categorical variable Passengerld 1 ID 2 Survived Binary variable 3 Pclass Categorical variable 4 Name ID 5 Sex Binary variable 6 Age Numerical variable SibSp Count variable ve only numbers 0-6, so they 8 Parch Count variable 9 Ticket Categorical variable 10 Fare Numerical variable 11 Cabin Categorical variable

🝸 Variable filter 🏫

 \bigcirc

Variable name

Embarked

0

Target variable

NO.

12

Date format

V Coler

 \checkmark

1

 \checkmark

1

Survived

Automatically identify data

types

Туре

Categorical variable

Set

T

Yariable filter

Date format

Select

 \checkmark

 \checkmark

 \checkmark

✓

 \checkmark

 \mathbf{V}

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

Set

Type

ID

Binary variable

Categorical variable

ID

Binary variable

Numerical variable

Categorical variable

Categorical variable

Categorical variable

Numerical variable

Categorical variable

are recognized as categorical variables.

Target variable

Survived

Variable name

Passengerld

Survived

Pclass

Name

Sex

Age

SibSp

Parch

Ticket

Fare

Cabin

However, the fields are interpreted as the number of siblings and spouses and the number of parents and children, so they should be changed to count variables.

Variables of Titanic data

No.	Variable	Description	Туре
1	PassengerId	Passenger ID	ID, Unique ID
2	Survived	Survived or not	Binary variable, target variable
3	Pclass	Ticket class	Categorical variable
4	Name	Passenger name	ID, Unique ID
5	Sex	Passenger gender	Binary variable
6	Age	Passenger age	Numerical variable
7	SibSp	Number of siblings and spouses	Count variable
8	Parch	Number of parents and children	Count variable
9	Ticket	Ticket No	Categorical variable
10	Fare	Fare price	Numerical variable
11	Cabin	Cabin	Categorical variable
12	Embarked	Port of embarkation	Categorical variable

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	0	3	Braund, Mr. Owen Harris	male	22		0	A/5 21171	7.25		S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/02. 3101282	7.925		S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803	53.1	C123	S
5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8.05		S

19 🗟

2.3 Quantitative data exploration with YModel

Data: Titanic.csv, row represents passenger sample, column represents different information of each passenger There is a quantitative variable(column) named **"Fare"** in the Titanic dada, use YModel to explore "Fare"

Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	3	male	22		0	A/5 21171	7.25		S
2	1	1	female	38	1	0	PC 17599	71.2833	C85	С
3	1	3	female	26	0	0	STON/O2. 3101282	7.925		S
4	1	1	female	35	1	0	113803	53.1	C123	S
5	0	3	male	35	0	0	373450	8.05		S
6	0	3	male		0	0	330877	8.4583		Q
7	0	1	male	54	0	0	17463	51.8625	E46	S
8	0	3	male	2	3	1	349909	21.075		S

Calculate the maximum / minimum, average, median, skewness and other statistical indicators? Analyze data distribution?

2.3 Quantitative data exploration with YModel

Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
male	22	1	0	A/5 21171	7.25		S
female	38	1	0	PC 17599	71.2833	C85	С
female	26	0	0	STON/02. 3101282	7.925		S
female	35	1	0	113803	53.1	C123	S
male	35	0	0	373450	8.05		S

There is a variable "fare" in the Titanic data, and data exploration is carried out for it.

The statistical values are shown in the figure below, and the graphical

distribution is shown in the figure below on the right,

It can be seen that the maximum is 512, minimum is 0, the average value is greater than the median, and the data skewness is large, indicating that the rich are in the minority.

Statistics							statistical values tomatically
Descriptive statist	ics Frequency dis	tributions	Descriptive statistic	s of group	ed target Frequ	ency distrons of	f grouped target
Missing rate Min	imum Maximum	Average	Upper quartile	Median	Lower quartile	Standard deviati	Skewness
0%	0.0 512.329	32.204	31.0	14.454	7.896	49.693	4.779

Farget v	variable S	urvived			Set	🍸 Variable fil	ter 🕇	÷
NO.	Variable	name		Туре		Date format		Sel
1	Age)	Numer	ical va	riable		6	V
2	Cabi	n	Catego	rical va	ariable		6	V
3	Embar	ked	Catego	rical va	ariable			Z
4	Fare	e	Numer	ical va	riahle		. 6	Z
5	Nam	е		1	Set tar	get variable	[
6	Parc	h	Catego		Add co	omputed variable	6	y (
7	Passen	gerld		-	Remo	ve variable)
8	Pclas	S	Catego	1	Move	variable up	0	V
9	Sex	I.	Bina	₽	Move	variable down	6	V
10	SibS	р	Catego	7	Variab	le filter	6	V
11	Surviv	ed	Bina	1	Variab	le analysis	6	V
12	Ticke	et	Catego		Analyz	e all variables	6	V
			L					

E

calculate various

2.4 Qualitative data exploration with YModel

On the right is the education background of Forbes ' top 30 CEOs with the highest incomes:

Please use YModel to explore the variable.

ID	CEO education	ID	CEO education
1	Bachelor	16	Master of Arts and Sciences
2	MBA	17	Bachelor
3	Bachelor	18	No university degree
4	Bachelor	19	Bachelor
5	MBA	20	Bachelor
6	No university degree	21	MBA
7	Doctor	22	Bachelor
8	MBA	23	Bachelor
9	MBA	24	MBA
10	MBA	25	MBA
11	Master of Arts and Sciences	26	MBA
12	MBA	27	Master of law
13	MBA	28	Bachelor
14	Master of Arts and Sciences	29	MBA
15	MBA	30	Bachelor

2.5 Correlation analysis with YModel - continuous variables

For example, in the case of housing price prediction on kaggle, practice using tools to analyze Pearson and Spearman correlation coefficients of GrLivArea" and " SalePrice ".

ld	GrLivArea	SalePrice
1	1710	208500
2	1262	181500
3	1786	223500
4	1717	140000
5	2198	250000
6	1362	143000
7	1694	307000
8	2090	200000
9	1774	129900
10	1077	118000

2.5 Correlation analysis with YModel - continuous variables

				Target varia	ble SalePrice		Set 🍸 Variab	le filter 🏫 🦊
ld	GrLivArea	SalePrice	For example, in the case of house price	NO.	Variable name	Туре	Date format	Select
_			Tor example, in the case of house price	34	GarageCond	Categorical variable		
1	1710	208500	prediction on kaggle, use YModel to vie	W 35	GarageFinish	Categorical variable		V
			the correlation between " GrLivArea "	36	GarageQual	Categorical variable		
2	1262	181500		37	GarageType	Categorical variable		
			residential area and "SalePrice".	38	GarageYrBlt	Count variable		V
3	1786	223500		39	GrLivArea	Set target variable		
_				40	HalfBath	Add computed varia	ble	
4	1717	140000		41	Heating	 Remove variable 		
				42	HeatingQC	1 Move variable up		
5	2198	250000		43	HouseStyle	Move variable		
_				44	Id	Variable F	Calculate (data)
6	1362	143000		45	KitchenAbvGr	Variable	correlatio	on
				40	KitchenQuai	Analyze	automatic	ally
7	1694	307000		47	LandContour	, and the second s	χ.	
_								
8	2090	200000	Statistics			0		
			Descriptive statistics Frequency distributions	Target variable cor		Single factor scatte	vr plot	
9	1774	129900	Descriptive statistics Frequency distributions	Target variable con	relation coefficient	Single factor scalle		
			Pearson			Spearman		
10	1077	118000		0.7006				0 7040
				0.7086				0.7313

Both the two correlation coefficients are greater than 0.7, which shows that the linear relationship between them is very strong.

2.5 Correlation analysis with YModel - continuous variables

Observing the scatter plot, it shows the trend that the larger the living area is, the higher the house price is, which shows that the correlation between them is very strong.

However, the two points in the lower right corner are very special, with a large living area, but the house price is very low, which affects the overall linear relationship, so they can be deleted as exception values.

2.5 Correlation analysis with YModel - categorical variables

Survived	Pclass	Name	Sex
0	3	Braund, Mr. Owen Harris	male
1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female
1	3	Heikkinen, Miss. Laina	female
1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female
0	3	Allen, Mr. William Henry	male

Explore the "Pclass" variable in Titanic data

What are the total categories?

What are the sample size and proportion of each category?

Is there a relationship between the different categories of the variable and the survival of the target variable?

2.5 Correlation analysis with YModel - categorical variables

Survived	Pclass	Name	Sex
0	3	Braund, Mr. Owen Harris	
1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female
1	3	Heikkinen, Miss. Laina	female
1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female
0	3	Allen, Mr. William Henry	male

There is a variable "Pclass" in the Titanic data to represent the cabin level, and data exploration is carried out for it.

The statistical values are shown in the figure below, and the graphical distribution is shown in the figure below on the right,

It can be seen that there are three classes in total. The number of people in class 3 accounts for more than half of the total. The higher the cabin class is, the greater the proportion of survival is.

Statistics			
Pie chart Frequency distribution:	s of grouped target		
Categorical variable	Sample size	Positive cases size	Positive cases rate
3	491	119	24.236%
2	184	87	47.283%
1	216	136	62.963%

Targe	tvariable S	Survive	d			Set 🍸	Vari	able fil	ter	1 4	
NO.	Variable na	ame	Typ	e	[Date format		Se	. Im	porta]
1	Sex		Binary v	ariabl	e					1	
2	Age		Numerica	l varia	able			V		0.4	
3	Pclass	8	Categoric	al vari	shla			V		2	Explore
4	SibSp		Categorio	P	Set targ	et variable		1	(variant
5	Cabin		Categorio		Add con	nputed variat	ble	V			automatically
6	Fare		Numeric	-	Remove	variable		1		0.12	
7	Embarke	ed	Categorio	1	Move va	riable up		V		27	
8	Parch		Categorio	÷	Move va	riable down		1	\bigcirc	0.024	
9	Survive	d	Binary	7	Variable	filter		V O		-)	
10	Name			L.	Variable	analysis				0	
11	Passenge	erld			Analyze	all variables		V		0	
12	Ticket		Categorica	al vari	able			V		0	

Statistics	
Pie chart Frequency distributions of grouped target	
Missing rate	Cardinality
0%	3

3 1 2

Chapter 3 Data pre-processing and modeling

3.1 classification model

3.2 Regression model

Click "new model", select Titanic data, click "OK" to import data.

Data and variables can be previewed on the right side of the page

The left side of the page is configured with character set format, date time format and missing value format for automatic recognition by software.

Create data file nam	e titanic.mtx			review data			Preview
Import the first li	ne as variable name	*		Passengerld	Survived	Pclass	
Omit all quotatio	n marks			1	0	3	
Check Column (Count		Γ	2	1	1	C
Delete a line wh	en column count does not match value count a	t lin		3	1	3	
Use double quo	tation marks as escape characters			4	1	1	
Delimiter		V		5	0	3	
				6	0	3	
Charset	GBK	•		7	0	1	
Date format	yyyy/MM/dd			8	0	3	
Time format	HH:mm:ss			9	1	3	J
Data time format				10	1	2	
Date time format	yyyy/MM/dd HH:mm:ss			11	1	3	
Locale	English			12	1	1	
				13	0	3	
Missing values (bar	-separated) NULLIN/A	_		14	0	3	
iniconig faideo (oa	Hotel with	- 1		15	0	3	
				16	1	2	
				17	0	3	

Passengerld	Survived	Pclass	Name
1	0	3	Braund, Mr. Owen Harris
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)
3	1	3	Heikkinen, Miss. Laina
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)
5	0	3	Allen, Mr. William Henry
6	0	3	Moran, Mr. James
7	0	1	McCarthy, Mr. Timothy J
8	0	3	Palsson, Master. Gosta Leonard
9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)
10	1	2	Nasser, Mrs. Nicholas (Adele Achem)
11	1	3	Sandstrom, Miss. Marguerite Rut
12	1	1	Bonnell, Miss. Elizabeth
13	0	3	Saundercock, Mr. William Henry
14	0	3	Andersson, Mr. Anders Johan
15	0	3	Vestrom, Miss. Hulda Amanda Adolfina
16	1	2	Hewlett, Mrs. (Mary D Kingcome)
17	0	3	Rice Master Eugene

X

Select the variables involved in the modeling and click Finish.

Here we choose all variables.

C à	Import data dictio	nary Note: Unselect	ted variables won't be	imported.	Preview data		Preview th	ne top 100 🚔 lines 🕂 Reloa
NO.	Variable na	Туре	Date format	✓ Select	Passengerld	Survived	Pclass	Name
1	Passengerld	Automatic		V	1			Braund, Mr. Owen Harris
2	Survived	Automatic		✓	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thay
3	Pclass	Automatic		✓	3	1	3	Heikkinen, Miss. Laina
4	Name	Automatic		✓	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)
5	Sex	Automatic		✓	5	0	3	Allen, Mr. William Henry
6	Age	Automatic		✓	6	0	3	Moran, Mr. James
7	SibSp	Automatic		✓	7	0	1	McCarthy, Mr. Timothy J
8	Parch	Automatic		✓	8	0	3	Palsson, Master. Gosta Leonard
9	Ticket	Automatic		✓	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg
10	Fare	Automatic		✓	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)
11	Cabin	Automatic		✓	11	1	3	Sandstrom, Miss. Marguerite Rut
12	Embarked	Automatic		✓	12	1	1	Bonnell, Miss. Elizabeth
13	title	Automatic		 ✓ 	13	0	3	Saundercock, Mr. William Henry
					14	0	3	Andersson, Mr. Anders Johan
					15	0	3	Vestrom, Miss. Hulda Amanda Adolfina
					16	1	2	Hewlett, Mrs. (Mary D Kingcome)
					17	0	3	Rice Master Funene

Select the amount of data to be detected. When the amount of data is small, all can be detected. When the amount of data is large, some can be detected, such as 50000 pieces, to improve efficiency. Here we check all.

Set target variable

In this case, we only have one target variable "survived", so we choose a single target variable. "Survived" is a binary variable, so we need to build a classification model.

K Set	target	variable			×					
Single target variable Survived										
O Mu	ilti targe	t variable								
	NO.		Vai	riable name	Select					
	1	Survived								
	2	Sex								
\$	Search	variable								
					<u>O</u> K <u>C</u> ancel)				

The software automatically counts 891 samples and 13 variables, and automatically identifies the data type of each variable, and eliminates useless variables.

Click the modeling button to start modeling.

					modelin	g
<u>F</u> ile	<u>E</u> dit	<u>R</u> un	<u>V</u> iew	<u>7</u> 00ls	<u>W</u> indow	<u>H</u> elp
-	(00) (00)		•			
ti	tanic					

Target variable	Survived	s	et 🍸 Variable fil	lter 🏫 🦊
NO.	Variable name	Туре	Date format	Select
1	Passengerid	ID		V
2	Survived	Binary variable		\checkmark
3	Pclass	Categorical variable		✓
4	Name	ID		
5	Sex	Binary variable		✓
6	Age	Numerical variable		\checkmark
7	SibSp	Categorical variable		✓
8	Parch	Categorical variable		\checkmark
9	Ticket	Categorical variable		✓
10	Fare	Numerical variable		\checkmark
11	Cabin	Categorical variable		✓
12	Embarked	Categorical variable		\checkmark
13	title	Categorical variable		✓
Search variable			Import 891 rows,	13 variables

Automatic data preparation and display the preparing progress.

S Build model	
NFO: Modeling data preparing10%	
[2020-03-21 15:55:50]	
NFO: Modeling data preparing20%	
2020-03-21 15:55:50]	
NFO: Modeling data preparing30%	
2020-03-21 15:55:50]	
NFO: Modeling data preparing40%	
2020-03-21 15:55:52]	
NFO: 2020-03-21 15:55:52.126315: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dyna mic library 'cudart64_101.dll'; dlerror: cudart64_101.dll not found	3
2020-03-21 15:55:52]	
NFO: 2020-03-21 15:55:52.126785: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dierror if yo)
i do not have a GPU set up on your machine.	
🖬 C	I

Preparation is completed, start modeling.

K Build model	\times
INFO: Modeling data preparing100%	A
[2020-03-21 15:59:55]	
INFO: Time for prepare : 9,339 ms	I.
[2020-03-21 15:59:55]	I.
INFO: The preparing is completed.	
[2020-03-21 15:59:55]	
INFO: Start modeling.	
[2020-03-21 15:59:56]	
INFO: 2020-03-21 15:59:56.572878: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dyna mic library 'cudart64_101.dll'; dlerror: cudart64_101.dll not found	Ľ
[2020-03-21 15:59:56]	
INFO: 2020-03-21 15:59:56.573369: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dierror if yo	
a do not have a GPO set up on your machine.	
	V
	ose

Automatic modeling completed, time consumed 10s

K Build model ×
2.0: 0.028132298749285137, 'Bl_title_12: 0.018541864479635937, 'Bl_MVP1_2: 0.01683396638542609, 'Bl_Pclass_1: 0.011128456600976071, 'Bl_Parch_1: 0.004388300859645607, 'Ml_Age': 0.004203449161629171, 'Bl_MVP1_3: 0.00408 5517582493258, 'Bl_Parch_2: 0.0, 'Bl_SibSp_2147483647: 0.0, 'Bl_MVP1_1: 0.0, 'Bl_title_2147483647': 0.0, 'Bl_Embarke d_1.0: 0.0} 2020-03-21 16:00:06,726 - interface_library.cp37-win_amd64.pyd[line:90] - DEBUG: performance of each base model in Yi Model: ('GBDTClassification_1: 0.8939982347749339, 'GBDTClassification_2: 0.8942630185348632, 'GBDTClassification_3: 0.8907031479847014, 'GBDTClassification_4: 0.8856134157105031, 'GBDTClassification_5': 0.8947043248014123 } 2020-03-21 16:00:06,726 - interface_library.cp37-win_amd64.pyd[line:90] - INFO: Calculate predict value on test data 2020-03-21 16:00:06,726 - interface_library.cp37-win_amd64.pyd[line:90] - DEBUG: predict value on test data: 2020-03-21 16:00:06,761 - interface_library.cp37-win_amd64.pyd[line:90] - DEBUG: predict value on test data: 2020-03-21 16:00:06,763 - interface_library.cp37-win_amd64.pyd[line:90] - DEBUG: predict value on test data: 2020-03-21 16:00:06,764 - interface_library.cp37-win_amd64.pyd[line:90] - DEBUG: ensemble performance 0.895793 2020-03-21 16:00:06,764 - interface_library.cp37-win_amd64.pyd[line:90] - DEBUG: writing out results 2020-03-21 16:00:06,764 - interface_library.cp37-win_amd64.pyd[line:90] - DEBUG: writing out results 2020-03-21 16:00:06,767 - interface_library.cp37-win_amd64.pyd[line:90] - DEBUG: writing out results 2020-03-21 16:00:06,764 - interface_library.cp37-win_amd64.pyd[line:90] - DEBUG: writing out results 2020-03-21 16:00:06,767 - interface_library.cp37-win_amd64.pyd[line:90] - DEBUG: writing out model 2020-03-21 16:00:06,814 - interface_library.cp37-win_amd64.pyd[line:90] - DEBUG: writing out results 2020-03-21 16:00:06,814 - interface_library.cp37-win_amd64.pyd[line:90] - DEBUG: writing out model 2020-03-21 16:00:06,814 - interface_library.cp37-win_amd64.pyd[line:90] - DEBUG: writing out mode

Tog View log 📑 Export report 🖙 Model presentation 🛄 Model performance 对 Open model directory

37

Ē

The models and parameters with better effect are selected automatically by using various algorithms to model respectively.

Niodel presentation			1 1-			
Ensemble performance 0.88	3937			Parameter name	Parameter value	
Model name	300	Soloct		learning_rate	0.1	
VCBClossification 1	0.070750	Select		reg_alpha	0	
NGBCIassilication_1	0.079756	V		verbosity	0	
RidgeClassification_1	0.863989			colsample_bytree	1	
GBD1Classification_1	0.881494			random_state	0	
				gamma	0	
				reg_lambda	1	
				objective	binary:logistic	
				booster	gbtree	
▲ ▼		C Calact		missing	null	
Difused models	0.046404	Select		subsample	1	
RFCIassification_1	0.840484			min_child_weight	1	
FINICIASSIFICATION_1	0.857634			max_delta_step	0	
TreeClassification_1	0.843042			colsample bylevel	1	

Click new model, select the data of house price prediction, and click OK to import the data.

<u>K</u> Load data					×
Data source loca	ation				
Local data	file	O Database type	() F	temote server	
Look <u>I</u> n: 🛅	test		<u> </u>		ii p
catering_	_sale.csv				
l housepri	ice_train.csv				
meter_d	ata.csv				
oversam	pling.csv				
titanic.cs	v				
undersa	mpling.csv				
File <u>N</u> ame:	houseprice_train	1.CSV			
Files of <u>T</u> ype:	*.mcf,*.mtx,*.txt,*	.CSV			•
				<u>о</u> к	Cancel

Data and variables can be previewed on the right side of the page.

The left side of the page is configured with character set format, date time format and missing value format for automatic recognition by software.

K Load data										×
Create data file name	houseprice_train.mtx		Preview	v data	Preview	the top		100	lines	€ Reload
🗹 Import the first l	ne as variable name		Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShap
Omit all quotation	on marks		1		RL		8450	Pave		Reg 🔺
Check Column	Count		2	20	RL	80	9600	Pave	NA	Reg
Delete a line wh	en column count does not match value coun	t at line 1	3	60	RL	68	11250	Pave	NA	IR1
Use double quo	tation marks as escape characters		4	70	RL	60	9550	Pave	NA	IR1
Delimiter		×	5	60	RL	84	14260	Pave	NA	IR1
			6	50	RL	85	14115	Pave	NA	IR1
Charset	GBK		7	20	RL	75	10084	Pave	NA	Reg
Date format	yyyy/MM/dd	•	8	60	RL	NA	10382	Pave	NA	IR1
Time format	HH:mm:ss		9	50	RM	51	6120	Pave	NA	Reg
			10	190	RL	50	7420	Pave	NA	Reg
Date time format	yyyy/MM/dd HH:mm:ss		11	20	RL	70	11200	Pave	NA	Reg
Locale	English	•	12	60	RL	85	11924	Pave	NA	IR1
			13	20	RL	NA	12968	Pave	NA	IR2
Missing values (bar-	senarated) NI II I N/A		14	20	RL	91	10652	Pave	NA	IR1
wissing values (bai-	NOLLINA		15	20	RL	NA	10920	Pave	NA	IR1
			16	45	RM	51	6120	Pave	NA	Reg
			17	20	RI	NA	11241	Pave	NA	IR1 V
						Cancel	<pre></pre>	ious	<u>N</u> ext >	Einish

Select the variables involved in the modeling and click Finish.

Here we choose all variables.

Import data dictionary Note: Unselected variables won't be imported.				Preview data	Preview data Preview the top			100 🔒 lines 🕂 Relo				
NO.	Variable na	Туре	Date format	🗹 Select		MiscFeature	MiscVal	MoSold	YrSold	SaleType	SaleCondition	SalePrice
1	Id	Automatic		 ✓ 		NA				WD		208500
2	MSSubClass	Automatic		\checkmark		NA	0	5	2007	WD	Normal	181500
3	MSZoning	Automatic		✓		NA	0	9	2008	WD	Normal	223500
4	LotFrontage	Automatic		✓		NA	0	2	2006	WD	Abnorml	140000
5	LotArea	Automatic		✓		NA	0	12	2008	WD	Normal	250000
6	Street	Automatic		\checkmark		Shed	700	10	2009	WD	Normal	143000
7	Alley	Automatic		✓		NA	0	8	2007	WD	Normal	307000
8	LotShape	Automatic		\checkmark		Shed	350	11	2009	WD	Normal	200000
9	LandContour	Automatic		✓		NA	0	4	2008	WD	Abnorml	129900
10	Utilities	Automatic		✓		NA	0	1	2008	WD	Normal	118000
11	LotConfig	Automatic		✓		NA	0	2	2008	WD	Normal	129500
12	LandSlope	Automatic		\checkmark		NA	0	7	2006	New	Partial	345000
13	Neighborho	Automatic		 ✓ 		NA	0	9	2008	WD	Normal	144000
14	Condition1	Automatic		 ✓ 		NA	0	8	2007	New	Partial	279500
15	Condition2	Automatic		✓		NA	0	5	2008	WD	Normal	157000
16	BldgType	Automatic		✓		NA	0	7	2007	WD	Normal	132000
17	HouseStyle	Automatic		✓		Shed	700	3	2010	WD	Normal	149000

Select the amount of data to be detected. When the amount of data is small, all can be detected. When the amount of data is large, some can be detected, such as 50000 pieces, to improve efficiency.

Here we check all.

S Detect variable type						
 Detect variable types now 						
 Detect all data 						
 Detect top 	1,000,000 🛓 lines	5				
O Do not detect (Can be detected	later via "Detect variable o	data type" op	tion)			
Do not ask me again (can be s	set in options menu)	<u>о</u> к	<u>C</u> ancel			

Set target variable

In this case, we only have one target variable

"SalePrice", so we choose a single target variable.

"SalePrice" is a numerical variable, so a regression model is needed.

K Set	target	variable			\times
Sir	ngle tar	get variable	SalePrice	•	
O Mu	lti targe	et variable			
	NO.		Variable name	Select	
	1	Street			
	2	Utilities			
	3	CentralAir			
\$	Search	variable			
				OK Canc	el

The software automatically counts 1460 samples and 81 variables, and automatically identifies the data type of each variable, and eliminates useless variables.

Click the modeling button to start modeling.

					modelin	g
<u>F</u> ile	<u>E</u> dit	<u>R</u> un	<u>V</u> iew	<u>7</u> 00ls	<u>W</u> indow	<u>H</u> elp
-			•			
h	ouse	price_	train			

Target variable	SalePrice		Set 🍸 Variable	filter 🏫 🦊
NO.	Variable name	Туре	Date format	Select
	ld	ID		V
2	MSSubClass	Categorical variable		√
3	MSZoning	Categorical variable		v
4	LotFrontage	Count variable		✓
5	LotArea	Count variable		
6	Street	Binary variable		✓
7	Alley	Binary variable		✓
8	LotShape	Categorical variable		✓
9	LandContour	Categorical variable		
10	Utilities	Binary variable		✓
11	LotConfig	Categorical variable		✓
12	LandSlope	Categorical variable		✓
13	Neighborhood	Categorical variable		✓
14	Condition1	Categorical variable		V
Search variable			Import 1,460 rows	s, 81 variables

Automatic data preparation and display the preparing progress.

K Build model	\times
INFO: Modeling data preparing10%	
[2020-03-21 16:16:19]	ł
INFO: Modeling data preparing20%	ł
[2020-03-21 16:16:19]	ł
INFO: Modeling data preparing30%	ł
[2020-03-21 16:16:19]	ł
INFO: Modeling data preparing40%	
[2020-03-21 16:16:20]	
INFO: 2020-03-21 16:16:20.507167: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dyna mic library 'cudart64_101.dll'; dlerror: cudart64_101.dll not found	
[2020-03-21 16:16:20]	
INFO: 2020-03-21 16:16:20.507629: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dierror if yo u do not have a GPU set up on your machine.	
	1
	ose

Preparation is completed, start modeling.

K Build model	>	<
INFO: Modeling data preparing100%		
[2020-03-21 16:18:30] INFO: Time for prepare : 15,946 ms		
[2020-03-21 16:18:30] INFO: The preparing is completed.		
[2020-03-21 16:18:30] INFO: Start modeling.		
[2020-03-21 16:18:31] INFO: 2020-03-21 16:18:31.404112: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dyn mic library 'cudart64_101.dll'; dlerror: cudart64_101.dll not found	a	
[2020-03-21 16:18:31] INFO: 2020-03-21 16:18:31.404620: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dierror if y u do not have a GPU set up on your machine.	0	Ç
	los	е

consumed 31s

Automatic modeling completed, time K Build model cFeature 4': 0.0, 'BI GarageCond 4': 0.0, 'BI ExterCond 3': 0.0, 'BI Foundation 3': 0.0, 'BI PoolQC 1': 0.0, 'BI Condition2 _2147483647': 0.0, 'BI_BsmtQual_3': 0.0} 2020-03-21 16:19:37,731 - interface_library.cp37-win_amd64.pyd[line:90] - DEBUG: performance of each base model in Yi Model: {'GBDTRegression 1': 105751014.91452684, 'LassoRegression 1': 710704456.8601335, 'LRegression 1': 70924 0314.0485679, 'ENRegression_1': 5937191785.153185, 'TreeRegression_1': 904308251.891064, 'RidgeRegression_1': 7 07362690.9720206, 'XGBRegression_1': 11758395.691195507, 'RFRegression_1': 788176495.2583228, 'FNNRegressio n_1': 909120228.0020952} 2020-03-21 16:19:37,731 - interface_library.cp37-win_amd64.pyd[line:90] - INFO: Calculate predict value on test data 2020-03-21 16:19:37,887 - interface_library.cp37-win_amd64.pyd[line:90] - DEBUG: predict value on test data: 2020-03-21 16:19:37,887 - interface library.cp37-win amd64.pyd[line:90] - INFO: Calculate ensemble performance 2020-03-21 16:19:37,888 - interface_library.cp37-win_amd64.pyd[line:90] - DEBUG: ensemble performance: 11758395.69 1196 2020-03-21 16:19:37.888 - interface library.cp37-win amd64.pyd[line:90] - INFO: Writing out results 2020-03-21 16:19:37,888 - interface library.cp37-win amd64.pyd[line:90] - DEBUG: writing out predict values 2020-03-21 16:19:37,896 - interface_library.cp37-win_amd64.pyd[line:90] - DEBUG: writing out model 2020-03-21 16:19:37,923 - interface_library.cp37-win_amd64.pyd[line:90] - DEBUG: writing out feature importance 2020-03-21 16:19:37,925 - interface library.cp37-win amd64.pyd[line:90] - DEBUG: writing out modeling information 2020-03-21 16:19:37,926 - interface library.cp37-win amd64.pyd[line:90] - INFO: Build model finished View log 📑 Export report 🖼 Model presentation 🛄 Model performance C Open model directory

X

The models and parameters with better effect are selected automatically by using various algorithms to model respectively.

K Model presentation

						L L.	
Ensemble performance	2972	75047.677084	_				P
Model name		mea		C Salact	-	4 4	mi
Modermanie		mse		V Select			
GBDTRegression_1		389710821.11055	59	\checkmark			
RidgeRegression_1		553123771.66355	55	\checkmark			
XGBRegression_1		368761771.77566	63	\checkmark			
							mi
						0	
* *							
Unused models		mse	1	Select			min_v
LassoRegression_1		571428977.768					min_
Regression 1		3 918387					
Entegression_1		0.010001					
ENRegression_1	1	3801395955.16			v		

Parameter name	Parameter value	
min_samples_leaf	50	
learning_rate	0.1	
max_leaf_nodes	null	
n_estimators	100	
random_state	0	
min_samples_split	50	
max_depth	6	
verbose	0	
alpha	0.9	
min_weight_fraction_leaf	0	
min_impurity_decrease	1e-08	
subsample	1.0	
warm_start	false	
max features	null	V
Copy selected model to	model options	se

Model file

After the model is built, a model file with the .pcf suffix is written out to make predictions.

If you still need to Save the modeling process, click the "Save" button to generate a modeling file with the such suffix.

The PCF model file contains only the model information without data included, while the MCF file contains both data and modeling configuration information.

<u>F</u> ile <u>E</u> dit <u>R</u> un <u>V</u> iew <u>T</u> ools <u>W</u> indow <u>H</u> elp
🇊 🕄 🚽 🍞 🔠
🛟 train
Model file train.pcf

<u>F</u> ile <u>E</u> dit	<u>R</u> un <u>V</u> iew <u>T</u> ools <u>W</u> indow <u>H</u> elp		
\$ @	J 🛟 Al		
† train			
Mode	l file train.pcf	💕 🖞	Model performance 🖙 Model presentation 📝 Model options
Data f	file train.mtx	_	Save as ×
Targe	t variable Survived		Look In: 🗀 data 🔹 🕋 🏠 🗐
NO.	Variable name		
1	Passengerld		
2	Survived		
3	Pclass		
4	Name		
5	Sex		File Name: train
6	Age		
7	SibSp		Files of Type: .mcf
8	Parch		Save as Cancel
9	Ticket		
40	5		

Chapter 4 Prediction

Click the "Scoring" button on the top left of YModel, open the PCF model file which was generated in the previous chapter.

Import the data set to be predicted.

<u>F</u> ile <u>V</u> iew <u>T</u> ools <u>W</u> indow <u>H</u> elp	
Train.pcf	
Batch scoring Scoring	
Scoring data	L.
Survived_1_percentage Passengerld Pclass Sev Y Load data	
Data source location	
Local data file Database type	
Look In: Csv Carlos Car	
train_t.csv	
File Name: train_t.csv	
Files of Type: *.txt,*.csv,*.mtx	
QK Cancel	no formana -
Linage UV This page Frevious page Current page The Next page US Model presentation US Model p	penormance

The prediction data is still in CSV format, and the variables must be the same as in the modeling data (columns in CSV), but there is no target variable.

For example, the difference between the two tables is that the modeling data has a target variable and the prediction data has no target variable.

	А	В	С	D	E	F	G	Н		J	К	L
1	Passenger	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
2	1	0	3	Braund, Mi	male	22	1	0	A/5 21171	7.25		S
3	2	1	1	Cumings, I	female	38	1	0	PC 17599	71.2833	C85	С
4	3	1	3	Heikkinen,	female	26	0	0	STON/O2.	7.925		S
5	4	1	1	Futrelle, M	female	35	1	0	113803	53.1	C123	S
6	5	0	3	Allen, Mr. \	male	35	0	0	373450	8.05		S
7	6	0	3	Moran, Mr	male		0	0	330877	8.4583		Q
8	7	0	1	McCarthy,	male	54	0	0	17463	51.8625	E46	S
9	8	0	3	Palsson, M	male	2	3	1	349909	21.075		S
10	9	1	3	Johnson, N	female	27	0	2	347742	11.1333		S
11	10	1	2	Nasser, Mr	female	14	1	0	237736	30.0708		С
12	11	1	3	Sandstrom	female	4	1	1	PP 9549	16.7	G6	S
13	12	1	1	Bonnell, M	female	58	0	0	113783	26.55	C103	S
14	13	0	3	Saunderco	male	20	0	0	A/5. 2151	8.05		S
15	14	0	3	Andersson	male	39	1	5	347082	31.275		S
	А	В	С	D	E	F	G	Н	1	J	К	L
1	Passengerl	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	1
2	624	3	Hansen, N	1 male	21	0	(350029	7.8542		S	
3	625	3	Bowen, M	r male	21	0	0	54636	6 16.1		S	
4	626	1	Sutton, Mi	male	61	0	0	36963	32.3208	D50	S	
5	627	2	Kirkland, R	male	57	0	0	219533	3 12.35		Q	
6	628	1	Longley, N	/female	21	0	(13502	2 77.9583	D9	S	
7	629	3	Bostandye	male	26	0	(349224	7.8958		S	
8	630	3	O'Connell	, male		0	0	334912	7.7333		Q	
9	631	1	Barkworth	, male	80	0	0	27042	2 30	A23	S	
10	632	3	Lundahl, N	/ male	51	0	0	347743	7.0542		S	
11	633	1	Stahelin-N	/ male	32	0	0	13214	30.5	B50	С	
12	634	1	Parr, Mr. V	male		0	(112052	2 0		S	
13	635	3	Skoog, Mi	female	9	3	2	347088	3 27.9		S	
14	636	2	Davis, Mis	female	28	0	0	237668	3 13		S	

Click the "Scoring" button on the top right of the interface to make the prediction, and the following interface can be obtained after completion. The column on the far left is the prediction results.

In this example, percentage represents the probability of survival of passengers, and passengers with higher probability have a greater chance of survival.

Batch scoring Scoring											
Scoring data C:\Program	n Files\raqsoft\y	/model\doo	cuments\csv\train_t.csv				2	Open Scoring			🛃 Scoring of
Survived_1_percentage	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
10.716%	624		Hansen, Mr. Henry Damsgaard		21			350029	7.8542		
10.138%	625	3	"Bowen, Mr. David John ""Dai"""	male	21	0	0	54636	16.1		S
11.519%	626	1	Sutton, Mr. Frederick	male	61	0	0	36963	32.3208	D50	S
47.94%	627	2	Kirkland, Rev. Charles Leonard	male	57	0	0	219533	12.35		Q
71.772%	628	1	Longley, Miss. Gretchen Fiske	female	21	0	0	13502	77.9583	D9	S
12.84%	629	3	Bostandyeff, Mr. Guentcho	male	26	0	0	349224	7.8958		S
5.331%	630	3	O'Connell, Mr. Patrick D	male		0	0	334912	7.7333		Q
10.162%	631	1	Barkworth, Mr. Algernon Henry Wilson	male	80	0	0	27042	30.0	A23	S
3.964%	632	3	Lundahl, Mr. Johan Svensson	male	51	0	0	347743	7.0542		S
19.052%	633	1	Stahelin-Maeglin, Dr. Max	male	32	0	0	13214	30.5	B50	С
5.46%	634	1	Parr, Mr. William Henry Marsh	male		0	0	112052	0.0		S
23.761%	635	3	Skoog, Miss. Mabel	female	9	3	2	347088	27.9		S
79.811%	636	2	Davis, Miss. Mary	female	28	0	0	237668	13.0		S
13.275%	637	3	Leinonen, Mr. Antti Gustaf	male	32	0	0	STON/O 2. 3101292	7.925		S
31,752%	638	2	Collver, Mr. Harvey	male	31	1	1	C.A. 31921	26.25		S

This result can also be exported to CSV, XLS and other formats.

At this point, the prediction is done, and the process is fairly straightforward.

					_	þ	×
							a X
	Open 🥘 Scoring			📝 Scoring o	ptions	₩ E	xport
Parch	Ticket	Fare		TXT			
0	350029	7.854		CSV			
0	54636	16.	×)	Excel			
0	36963	32 320	1	Copy to system of	lipboard		
0	219533	12.3		Copy selected da	ta to syste	m clipbo	bard
0	12502	77 0502	DO	G .			
0	13502	77.9503	09	5			
0	349224	7.8958		S			
0	334912	7.7333		Q			
0	27042	30.0	A23	S			
0	347743	7.0542		S			
0	13214	30.5	B50	С			

Chapter 5 Model evaluation and business application

5.1 How to evaluate a general prediction

5.2 How to improve the marketing success rate

5.3 How to do multi-product portfolio marketing

5.4 How to predict rare cases

5.5 Other evaluation indexes

5.6 Regression model evaluation

5.1 How to evaluate a general prediction

Usually we check an index called AUC, which is greater than 0.5 but less than 1. The larger AUC value the better model performance.

General prediction

AUC = 0.5: the prediction model is the same as the random model, i.e. the discrimination between positive and negative samples is not better than the random model.

 $0.50 < AUC \le 0.65$: poor

 $0.65 < AUC \le 0.80$: medium

 $0.80 < AUC \le 0.90$: good

 $0.90 < AUC \le 1.00$: excellent

Random model AUC=0.5 Random guess results AUC < 0.5 indicates that the model is not as good as coin tossing Perfect model AUC=1 All predictions are correct But if AUC = 1, it's probably over fitting Normal ROC curve 0.5<AUC<1 Find some data laws, and not over fitting This is the model that can be used basically

5.2 How to improve the marketing success rate

In a marketing scenario, in addition to check AUC value, also there is another useful index called Lift.

Lift is a measure to evaluate the effectiveness of a prediction model. Its value is the ratio between the results obtained with and without the prediction model.

Suppose there are 100 watermelons, of which 50 are good melons, 50 are bad melons, and the rate of good melons is 50%. These watermelons were predicted by using the model, and arranged in descending order according to the predicted probability, 8 of the top 10 melons are really good melons, and the proportion of correct prediction is 0.8, then the improvement degree of the model in the top 10% melons is 0.8 / 0.5 = 1.6

That is to say, for the top 10% of melons, using the model will be 1.6 times better than random grasping.

Good melon rate	Top X%	Number of melons	Accumulated samples	Number of good melons	Good melon rate	Accumulated good melons	Accumulated good melon rate	Lift	Accumulated lift
	10%	10	10	8	0.8	8	0.8	1.6	1.6
	20%	10	20	7	0.7	15	0.75	1.4	1.5
0.5	30%	10	30	6	0.6	21	0.7	1.2	1.4
	40%	10	40	6	0.6	27	0.675	1.2	1.35
	50%	10	50	5	0.5	32	0.64	1	1.28

.....

5.2 How to improve the marketing success rate

Lift is particularly suitable for targeted marketing scenarios

For example, in a product telemarketing scenario, there are 1 million potential customers, and the purchase rate of customers is 1.5%, that is to say, an average of **1.5** in randomly selected **100** customers will buy the product.

After using the model, the lift of the top 5% of the predicted probability is 14.4, that is to say, **21.6** (1.5 * 14.4) people in 100 people will buy the product, far higher than the randomly selected 1.5 people, greatly improving the marketing efficiency and reducing the ineffective marketing actions.

If there are many kinds of products to be sold, such as a dozen or even hundreds of products, we can further improve the success rate and marketing value by exploring customers' interests and recommending product combinations to them. For example, Banks may have dozens of financial products to market, home appliance companies may have a variety of home appliance products to sell, supermarkets or e-commerce companies may have a variety of products to sell, and insurance companies may have various types of insurance products to market....

The classic case of beer and diaper in history is to increase the sales of both diapers and beer by mining data rules and selling two seemingly unrelated product combinations. For another example, there are many kinds of financial products in the bank, so we can combine several products with high purchase probability to sell by mining users' purchase preferences.

The prediction of a multi-product portfolio purchase list is also very simple, with off-the-shelf functional modules in the YModel. Specific operations are as follows:

(1) Modeling data set: prepare a tabular table of multiple objectives. Make a tabular table of historical information and all target variables needed to predict the products, as shown in Figure y1, y2, y3...Represents historical data on whether or not each product was purchased, these to be called multiple targets.

A	В	С	D	E	F	G	H		J	K	L	Μ	N	0	Р	Q	R
age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	poutcome	y1	y2	уЗ	y4	y5
5	8 managem	married	tertiary	no	2143	yes	no	unknown	5	may	261	unknown	no	0	no		0 no
4	4 technician	single	secondary	no	29	yes	no	unknown	5	may	151	unknown	no	0	no		0 no
3	3 entreprene	married	secondary	no	2	yes	yes	unknown	5	may	76	unknown	no	0	no		0 no
4	7 blue-colla	married	unknown	no	1506	yes	no	unknown	5	may	92	unknown	no	0	no		0 no
3	3 unknown	single	unknown	no	1	no	no	unknown	5	may	198	unknown	no	1	no		0 yes
3	5 managem	married	tertiary	no	231	yes	no	unknown	5	may	139	unknown	no	0	no		0 no
2	8 managem	single	tertiary	no	447	yes	yes	unknown	5	may	217	unknown	no	0	no		0 no
4	2 entreprene	divorced	tertiary	yes	2	yes	no	unknown	5	may	380	unknown	yes	0	no		0 no
5	8 retired	married	primary	no	121	yes	no	unknown	5	may	50	unknown	no	0	yes		0 no
4	3 technician	single	secondary	no	593	yes	no	unknown	5	may	55	unknown	no	0	no		0 no
4	1 admin.	divorced	secondary	no	270	yes	no	unknown	5	may	222	unknown	no	0	no		1 no
2	9 admin.	single	secondary	no	390	yes	no	unknown	5	may	137	unknown	no	0	no		0 no
5	3 technician	married	secondary	no	6	yes	no	unknown	5	may	517	unknown	yes	1	no		0 no
5	8 technician	married	unknown	no	71	yes	no	unknown	5	may	71	unknown	no	0	no		0 no
5	7 services	married	secondary	no	162	yes	no	unknown	5	may	174	unknown	no	0	no		0 no
5	1 retired	married	primary	no	229	yes	no	unknown	5	may	353	unknown	no	0	no		1 no
4	5 admin.	single	unknown	no	13	yes	no	unknown	5	may	98	unknown	no	0	no		0 no
5	7 blue-colla	married	primary	no	52	yes	no	unknown	5	may	38	unknown	no	0	no		0 no
6	0 retired	married	primary	no	60	yes	no	unknown	5	may	219	unknown	no	C	no		0 no

(2) When configuring the target variable, change the single target variable to multiple target variables, as shown in the figure. YModel will automatically combines products based on user preferences.

Other operation steps are the same as single product purchase prediction. After the prediction is done, the results will appear as follows:

Batch scoring Scoring															
Scoring data C:\Program File	es\raqsoft\ymodel\data\bank	-full1.m	tx					💕 Open	® s	coring			Scoring of	ptions	C Export
Recommended combination	Combination_percentage	age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	campaign	pdays
y2,y4,y6,y8,y1,y3,y5,y7,y9	90.339%	55	management	divorced	tertiary	no	7010	no	no	cellular	22	sep	155	1	195
y2,y4,y6,y8,y1,y3,y5,y7,y9	90.331%	34	management	single	tertiary	no	340	yes	no	unknown	3	jun	633	28	
y2,y4,y6,y8,y1,y3,y5,y7,y9	90.329%	48	unemployed	married	primary	no	1296	no	no	cellular	5	mar	119	1	
y2,y4,y6,y8,y1,y3,y5,y7,y9	90.321%	26	technician	single	secondary	no	354	no	no	cellular	16	jul	586	1	
y2,y4,y6,y8,y1,y3,y5,y7,y9	90.319%	35	management	married	secondary	no	724	yes	no	cellular	18	oct	102	3	96
y2,y4,y6,y8,y1,y3,y5,y7,y9	90.316%	46	management	married	tertiary	no	699	no	no	cellular	2	feb	241	1	_
y2,y4,y6,y8,y1,y3,y5,y7,y9	90.312%	27	blue-collar	single	secondary	no	294	yes	yes	unknown	28	may	694	2	
y2,y4,y6,y8,y1,y3,y5,y7,y9	90.311%	24	technician	single	tertiary	no	368	no	no	cellular	7	oct	197	2	
y2,y4,y6,y8,y1,y3,y5,y7,y9	90.298%	70	retired	married	secondary	no	616	no	no	cellular	27	oct	89	1	
y2,y4,y6,y8,y1,y3,y5,y7,y9	90.296%	61	technician	divorced	secondary	no	6481	no	no	cellular	19	oct	131	1	
y2,y4,y6,y8,y1,y3,y5,y7,y9	90.294%	28	management	single	unknown	no	560	no	no	cellular	2	jun	135	1	
y2,y4,y6,y8,y1,y3,y5,y7,y9	90.291%	45	admin.	married	secondary	no	362	no	no	cellular	12	aug	536	4	
y2,y4,y6,y8,y1,y3,y5,y7,y9	90.286%	33	management	single	tertiary	no	718	yes	no	cellular	18	oct	104	1	111
y2,y4,y6,y8,y1,y3,y5,y7,y9	90.279%	39	management	married	tertiary	no	1373	no	no	cellular	19	aug	386	2	

The first column on the left is the content of the product portfolio, and the second column is the probability that the user will buy the portfolio. Once the results are exported, the product portfolio purchase list is generated, and the top customers with higher probability can be marketed.

It should be noted that for the combination probability without Lift curve, the number of top customers will depend on the situation (usually this number will be more than the number of customers for a single product).

5.4 How to predict rare cases

In many business scenarios, there is a data imbalance phenomenon, such as bank loan defaults, only a small number of people default ; Insurance fraud, fraud is also an individual phenomenon; There are also the proportion of defective products in product quality, non-planned parking phenomenon in industrial production....

The occurrence rate of these rare phenomena is very low, but once happen, there will be a large loss, so it's better to predict and avoid them.

In the scenario with unbalanced data distribution, it is meaningless to just check the accuracy. What is more significant to us is Recall. Recall is how many of the positive samples were correctly predicted.

For an exaggerated example, to identify terrorists in airport, only five terrorists in 1 million passengers, because the terrorists are rare, if accuracy is used to assess the model, as long as all people are recognized as normal people, its accuracy can reach 99.9995%, but apparently this doesn't make sense, no terrorist would be caught, that is to say, although the model accuracy is very high but the recall rate is 0/5 = 0. On the contrary, the other model predicted that 100 people would be high risk group, and that all five terrorists would be included in that group. The accuracy was down to 99.9905% (95 people were wrong), but the recall rate was 5/5=1, and the terrorists were caught. Such a model would make more sense.

5.4 How to predict rare cases

In YModel, Recall curve is used to judge the Recall rate. As shown in the figure, the abscissa represents the number of the prediction probability of rare occurrence in order from high to low, 10,20...Represents the top 10%, 20%..., and the ordinate represents the recall value corresponding to each ranking stage.

The recall rate corresponding to the abscissa 10 in the figure is about 0.75, indicating that 75% of the rare phenomena can be captured in the top 10% of the predicted probability. That is to say, compared with all the screening, we can find 75% of the rare (abnormal) cases with 10% of the workload. The closer the Recall curve is to the upper left corner, the better the ability of the model to capture rare phenomena(default, fraud, defective products, abnormal equipment...).

5.5 Other evaluation indexes-Gini index

Gini index is usually used in insurance rate making and credit risk management system.

```
Gini Index = 2 \times (AUC - 0.5)
```

Using the same data to model, the higher the Gini index, the better the model is in the sense of separating data.

GINI	AUC	KS				
0.854297	0.927149	0.718632				

```
Gini \ge 0.8: the model is excellent. However, you need to check whether the model is over fitted.

0.8 > Gini \ge 0.6: very good model

0.6 > Gini \ge 0.3: reasonable model

0.3 > Gini \ge 0: there is no difference between the model and the random model, and it needs to be completed.
```

5.5 Other evaluation indexes-KS

KS(Kolmogorov-Smirnov): KS value can be used to evaluate the prediction model. Used to measure the ability of the model to distinguish positive and negative samples. The larger the KS value is, the stronger the ability of the model to distinguish positive and negative samples is.

GINI	AUC	KS			
0.854297	0.927149	0.718632			

ks≥ 0.3: the model has good predictability.
0.3 > ks ≥ 0.2: the model is usable.
0.2> ks ≥0: poor prediction ability of the model
ks< 0: the model is incorrect

Generally, if the negative samples have a great impact on the business, then the differentiation must be very important. At this time, K-S is more suitable for model evaluation than AUC. If there is no special impact, then AUC is good.

5.6 Regression model evaluation

Common indexes: R², MSE, RMSE, GINI, MAE, MAPE, etc.

Regression model evaluation

Graphs:

Residual diagram, result comparison diagram

5.6 Regression model evaluation with YModel

Use YModel to model the data of house price prediction, and then view various model indexes and graphs.

THANKS

