
Unstructured text computing

SPL Base



CONTENTS
Hard structured

File retrieval

Word statistics

1

2

3

Deduplicate by row4



1
Mike
17

2
Rose
16

3
Smith
15

4
Mary
14

For the text with fixed row structure, just read it as a sequence, remove the 
redundant empty rows, and then fill in the table structure one by one.

The following is student information（ student.txt ):  a record for every 3 
lines, separated by a blank line.

Hard structured - fixed rows 

A B

1 =file("D:\\student.txt") //Open the file

2 =A1.read@n() //Read data into sequence by line

3 =A2.select(~!="") //Remove blank lines between records

4 =create(ID,Name,Age) // Create table structure

5 =A4.record(A3) //Fill the A3 sequence into the table 
structure

ID

Name

Age

Field name

By default, the whole text will be read as a large text string. The n option 
is used here to read the text as a sequence by line, with one member for 
each line.



The file cannot be read into memory at one time. Instead, you need to 
create the file as a cursor and attach the cursor's delay function (select) 
to process the data block by block. 

When the file is large (can’t be loaded into memory), it needs to 
be processed in blocks with cursor.

Hard structured - fixed rows - cursor

A B

1 =file("D:\\student.txt") //Open the file

2 =A1.cursor@i() //Create file cursor

3 =A2.select(~!=null) //Remove blank lines between records

4 =create(ID,Name,Age) //Create table structure

5 for A3,300 >A4.reset()

6 =A4.record(A5)

By default, the cursor processes the data as a sequence table with 
structure, but the text has only one column. Here, i option is used to 
convert the sequence table with only one column to a sequence, which is 
convenient for subsequent calculation of the sequence.

Note the difference between the cursor data and the row read in the last 
section. The cursor always processes the data according to the structure, 
and automatically resolves the data to the corresponding data type, so 
the empty row is resolved to null data.

The data is processed in loop and blocks. It should be noted that the 
block of each fetching must be a multiple of 3, because the current table 
structure is 3 columns, otherwise the data filling will be misplaced.

After the structured data is calculated, pay attention to reset to prevent 
memory overflow.



For indefinite row text, after importing it into the sequence, you need to merge 
indefinite rows into one row, and then fill in the table structure one by one.

Here are some email messages（ mail.txt ）, the number of lines 
occupied by the message content is variable.

Sender: 
Melody<Melody@bus.emory.edu>
Receiver: 
Susan<Susan@google.com>
Date: 
1/14/2020
Content:
Do you Yahoo!?
SBC Yahoo! DSL - Now only $29.95 per month!

Sender: 
Tom<Tom@163.com>
Receiver: 
rose<rose@163.com>
Date: 
2/24/2020
Content:
IMPORTANT NOTICE: 
The information in this email (and any attachments) is 
confidential.
If you are not the intended recipient, you must not use or 
disseminate 
the information. If you have received this email in error, 
please 
immediately notify me by "Reply" command and 
permanently delete 
the original and any copies or printouts thereof.

Hard structured - indefinite rows

A B

1 =file("D:\\mail.txt") //Open the file

2 =A1.read@n().select(~!="") //Import sequence and remove blank 
lines

3 =A2.group@i(~=="Sender:") //Each line starting with Sender: and 
subsequent lines is a group

4
=A3.new(~(2):Sender,~(4):Recei
ver,~(6):Date,~.to(8,).string():C
ontent)

//Extract record value, merge body, 
create new structure table

5

Sender

Receiver

Date

Content

~.to(8,) means starting from line 8 of the current group, and omitting parameters 
after comma means taking all subsequent lines. .string() merges the current row 
sequence into one row.

1
2
3
4
5
6
7
8

Field name

9



A B

1 =file("D:\\mail.txt") //Open the file

2 =A1.cursor@i().select(~!=null) / /C rea te  cu r so r  sequence  and 
remove empty lines

3 =A2.group@i(~=="Sender:") //Group by record

4
=A3.new(~(2):Sender,~(4):Recei
ver,~(6):Date,~.to(8,).string():Co
ntent)

//Extract record value, merge body, 
create new structure table

5 =A4.fetch() //Cursor fetches all data

Hard structured - indefinite rows - cursor

When the file is large (can’t be loaded into memory), it 
needs to be processed in blocks with cursor.

Also note that after returning the sequence with the i 
option, null values should be used when blank rows are 
removed.

When fetching data for structured table, pay attention to 
fetching in blocks to prevent memory overflow.



The log is one line corresponding to one record. The example on the left 
automatically turns the line. The yellow part of the figure shows one line of data 
(all the following lines are the same).

It is impossible to use simple separator to split, and the content includes 
redundant brackets ([]), minus sign (-), character (ms), etc.           

In this case, regular expressions can be used to split.

The following is the startup log of a video software（ QQLive.log ).

[18-08-13 13:50:21][13104]-
[0ms][QQLiveMainModule.dll][CQQLiveModule::Pars
eCommandLine] cmd="C:\Program Files 
(x86)\Tencent\QQLive\QQLive.exe" 
[18-08-13 13:50:21][13104]-
[78ms][QQLiveMainModule.dll]QQLiveDaemon:Reg
AllHotKey:Default Bosskey Registered.
[18-08-13 13:50:21][13104]-
[78ms][QQLiveMainModule.dll]ctrl + alt + shift + 5 
Registered
[18-08-13 13:50:21][13104]-
[78ms][QQLiveMainModule.dll]ctrl + alt + shift + 6 
Registered
[18-08-13 13:50:21][13104]-
[78ms][QQLiveMainModule.dll]ctrl + alt + shift + 7 
Registered

Hard structured — Single row regular split

A B

1 \ [ ( . * ) \ ] \ [ ( . * ) \ ] -
\[(.*)ms\]\[(.*)\]\[(.*)\](.*)

//Define regular expression

2 =file("D:/QQLive.log").read@n() //Open the log file, and read the 
contents into sequence by line

3 =A2.regex(A1) //Using regex, the regular analysis 
function of sequence, the field is split



The log is multiple lines, and the indefinite lines correspond to one record.           

The record boundary needs to be determined first, and it is judged by starting with 
the left bracket in the text, and then divided into groups according to the records. 
After merging records into strings, regular expressions are used to split them.

The following is the monitoring log of a software（ raq.log ).

[2018-05-14 09:20:20] 
SEVERE: Load library module.dll failed.

[2018-05-14 09:20:21] 
DEBUG: Temporary file directory is:
D:\temp\esProc\nodes\127.0.0.1_8281\temp. 
Files in temporary directory will be deleted on 
every 12 hours.

[2018-05-14 09:20:21] 
INFO: Server is succeed :started.

Hard structured — Multiple rows regular split

A B

1 =file("D:/raq.log").read@n() //Open the log file, and read the 
contents into sequence by line

2 =A1.select(~!="") //Filter out blank lines

3 =A2.group@i(like(~,"[*")) //Group by record content

4 \[(.*)\] ([A-Z]+):(.*) //Define regular expression

5 =A3.regex(A4) //Perform regular analysis



The file itself is structured data. It's just a cross table of students' scores in each 
subject. Now you need to restore each subject to a record with the field names 
subject and score.

The following is a score cross table in CSV format（ scores.csv ).

ID,Name,Math,Physics,Chemistry
1,Mike,67,87,72
2,Rose,80,90,84
3,Smith,90,88,76
4,Mary,88,67,77
5,Tod,55,70,87
6,Melody,40,90,55
7,David,90,65,80
8,Snoopy,100,90,85
9,Michale,70,78,55
10,Nikita,66,88,70

Hard structured — Crosstab restore

A B

1 =file("D:/scores.csv") //Open the file

2 =A1.import@tc() //Import data

3 =A1.pivot@r(ID,Name;Subject,
Score)

//Transpose each course to the 
record row with field names subject 
and score

4



The log file is a line corresponding to a record. The left figure uses the 
interval color to distinguish different lines. The corresponding 4 columns 
are named type, desc, file and status.

The main points of splitting are as follows:

1： It can't be simply separated by commas. Consider the pairing of 
quotation marks.

2：Desc contains subfields and is described as a segmented string.

3：Desc of each type is not aligned. There is no subfield such as version 
when the type is 1.

4：Desc is not a regular segmented string, where the first section is name 
without section value.

The following is HPUpdate.exe.log for windows.

1,"fusion","GAC",0
1,"WinRT","NotApp",1
3,"System, Version=4.0.0.0, Culture=neutral, 
PublicKeyToken=b77a5c561934e089","C:\windows\assembly\
NativeImages_v4.0.30319_64\System\01a3608d87251d7ea99
342a88d079c23\System.ni.dll",0
3,"System.Core, Version=4.0.0.0, Culture=neutral, 
PublicKeyToken=b77a5c561934e089","C:\windows\assembly\
NativeImages_v4.0.30319_64\System.Core\2a6c39230fef9dfaf
c7ede45f99ec776\System.Core.ni.dll",0
3,"WindowsBase, Version=4.0.0.0, Culture=neutral, 
PublicKeyToken=31bf3856ad364e35","C:\windows\assembly\
NativeImages_v4.0.30319_64\WindowsBase\996cd1a75c20ce
6e697aad199323707b\WindowsBase.ni.dll",0
3,"PresentationCore, Version=4.0.0.0, Culture=neutral, 
PublicKeyToken=31bf3856ad364e35","C:\windows\assembly\
NativeImages_v4.0.30319_64\PresentationCore\6228d402fde
bfae866e84fdfe08773bf\PresentationCore.ni.dll",0

Hard structured — Comprehensive



First, follow the comma, and note that the quotation mark pairs 
are split into the basic table, and rename the default field: 

Split steps:

Hard structured — Comprehensive

Then, the desc field contents are divided into the 
sequence table of name and value key pairs.



From the sequence table of Desc, extract the key with empty 
value as the name column:

Split steps:

Hard structured — Comprehensive

Then delete the name line in the key pair.



Transpose the key pair table to facilitate merging the sub table 
fields into the main table:

Split steps:

Hard structured — Comprehensive

The transposed sub tables are merged into the main table:



SPL script：

Hard structured — Comprehensive

A B

1 =file("D:/HPUpdate.exe.log").import
@qoc()

//Open log and import file

2 =A1.rename(_1:Type,_2:Desc,_3:File,_4:
Status)

//Rename the default field

3 =A2.run(Desc=Desc.property@c()) //Split desc into key pairs

4 =A3.derive(Desc.select(value=="").na
me:Name)

//Extract name column from key pairs

5 =A4.run(Desc.delete(Desc.pselect(val
ue:"")))

//Delete the name in the key pair

6 =A5.run(Desc=Desc.pivot(;name,valu
e))

//Transpose the key pair table

7 =A6.news@1(Desc;Type,Name,Cultur
e,PublicKeyToken,Version,File,Status)

//Merge sub table to main table

Use the Q option to remove the quotation mark of the 
segmented string; O means that the quotation mark is an escape 
character, otherwise the slash of the path symbol will be 
regarded as the default escape character; C means that it is 
separated by commas.

When merging to the main table, since the row with type 1 has 
no key pair, the 1 option indicates that even if the key pair is 
empty, it will be joined to the main table. Otherwise, records with 
null key pairs will be lost.



CONTENTS

Word statistics3

Deduplicate by row4

Hard structured

File retrieval

1

2



Two entry parameters are defined. Path is the search root directory and key is the 
keyword to be searched.

Similar to the grep command, after the root directory is given, search 
the lines containing keyword in all text files in the current directory.

File retrieval - Search

A B

1 =directory@ps(path+"/*.txt") //Lists all text files in the search 
directory(including subdirectories)

2
=A1.run(file(~).read@n().run(if
(pos(~,key) ,output(A1.~/" 
No"/#/“Row: "/~))))

//Read in the contents of each file, 
compare keyword line by line, and 
output corresponding information

3

Run is a loop execution function, which traverses and executes 
all files under the root directory. The next run is to traverse 
and search the file content.

The logic of output is very simple. After finding it, print the 
content of the line and  line number. Note that in SPL, when 
the line number of integer type is concatenated with string, 
use /, not +.



When using cursors, they need to be processed in blocks. The for code block is 
used here,  and it is convenient to write multiple statements.

File retrieval – Search - Cursor

A B C

1 =directory@ps(p
ath+"/*.txt")

//Lists al l  text f i les in the search 
directory(including subdirectories)

2 for A1
=file(A2).cursor@is().run(if
(pos(~,key),output(A2/" 
No"/#/“Row: "/~)))

//Create file cursor

3 for B2,1000 / / F e tc h  d a t a  i n 
blocks

4

When the file is large (can’t be loaded into memory), it needs 
to be processed in blocks with cursor.

Use the s option to process the data by rows, and the i option 
to convert the returned single field sequence table to sequence, 
so as to make the expression consistent with the last section.

Fetching data in loop for cursor B2, the number of fetched 
records is 1000 lines each time until the data is all fetched. The 
run function defined earlier will be executed automatically 
during the fetching process.



Three entry parameters are defined. Path is the root directory, source is the source 
string to be replaced, and target is the target string to be replaced.

Given the root directory, replace the specified text in all text files 
under the path.

Unlike search, you need to save the content to a file after 
replacement, so it is not convenient to complete the whole action in 
one statement. Use the for code block to disassemble the action to 
read in file, execute replacement, and then save to file.

File retrieval - Replace

A B C

1 =directory@ps
(path+"/*.txt")

//List all text files in the path 
d i r e c t o r y ( i n c l u d i n g 
subdirectories) 

2 for A1 =file(A2).read@n() //Loop through all files in 
the directory

3 =B2.run(~=replace(~,s
ource,target))

//Replace the content in 
each file

4 =file(A2).write(B3) //Write out the replaced 
content to the original file



File retrieval – Replace - Cursor

A B C

1
=director
y@ps(pat
h+"/*.txt")

//List all text files in the path 
d i r e c t o r y ( i n c l u d i n g 
subdirectories) 

2 for A1 =file(A2).cursor@is()
//Loop through all files in 
the directory and create 
cursor

3 =B2.run(~=replace(~,s
ource,target))

/ / D e f i n e  re p l a c e m e n t 
calculation for cursor

4
=file(filename@d(A2)+
"\\"+filename@n(A2)+
"_2."+filename@e(A2))

//Define a new output file 
under the same path as the 
source file

5 =movefile(B4)
//Delete a new file with the 
same name to  prevent 
adding to  f i le  wi th  the 
same name

6 for B3,1000 =B4.write@a(B6)

When the file is large (can’t be loaded into memory), it needs to 
be processed in blocks with cursor.

When cursor replacement is used, because the reading of source 
file and writing after replacement is carried out at the same time, 
we need to write to a new file. 

The data retrieved in loop is written to the file B4 by 
appending.



CONTENTS

Deduplicate by row4

Hard structured

File retrieval

Word statistics

1

2

3



An entry parameter needs to be defined, and filepath is the file name with 
path that needs to be counted.

Implement the wordcount algorithm. Given the text file, count the 
number of each word in the text.

First, all the words in the text are split. Then, just group by words 
and count the number of each group.

Word statistics - Word count 

A B

1 =file(filePath).read() //Read in the text content of the 
given file

2 =A1. words() //Split content into word sequence

3 =A2.groups(lower(~):Word;cou
nt(~):Count)

/ / A f te r  t r a n s f e r r i n g  w o rd s  t o 
lowercase, group and count



Word statistics - Word count - Cursor

A B

1 =file(filePath).cursor@is() //Create file cursor

2 =A1.run(~=~.words()).conj()
//Define delayed calculation. After each 
row of data is split into word sequence, 
it is finally merged into large sequence.

3 =A2.groups(~:Word;count(~):
Count)

//Summary statistics of cursor data

When the file is large (can’t be loaded into memory), it needs to 
be processed with a cursor.

It is still the is option that produces a cursor with only 
one column and returns the sequence.



Implement the wordcount algorithm. Given the text file, count the 
number of each letter in the text.

It's similar to word splitting, except that split function is used to split 
letters. 

Word statistics - letter count

A B

1 =file(filePath).read() //Read in the text content of the 
given file

2 =A1. split() //Split content into word sequence

3 =A2.groups(~:Char;count(~):C
ount)

//Group and count characters



Word statistics - letter count - Cursor

A B

1 =file(filePath).cursor@is() //Create file cursor

2 =A1.run(~=~.split()).conj()
//Define delayed calculation. After each 
row of data is split into letter sequence, 
it is finally merged into large sequence.

3 =A2.groups(~:Char;count(~):
Count)

//Summary statistics of cursor data

When the file is large (can’t be loaded into memory), it needs to 
be processed with a cursor.

It is still the is option that produces a cursor with 
only one column and returns the sequence.



CONTENTS
Hard structured

File retrieval

1

2

Word statistics3

Deduplicate by row4



Here are some common network addresses collected by a 
student（ urls.txt ）. Need to sort out duplicate URLs.

Deduplicate by row - text

A B

1 =file("d:/urls.txt")) //Open the specified file

2 =A1.read@n() //Read file content by row as 
sequence

3 =A2.group@1() //Group by sequence member

4 =A1.write(A3) //Get all row number sequence

Using the 1 option, the repeated rows only returns the first row, and the 
content after deduplication is obtained.

https://123.sogou.com/
https://www.sogou.com/
https://stackoverflow.com/
https://123.sogou.com/
http://www.raqsoft.com.cn/
https://www.baidu.com/
https://www.sogou.com/
https://123.sogou.com/
https://stackoverflow.com/
http://www.raqsoft.com.cn/

Read the contents of the file by row, and then group them by row. 
Only the first row is taken for the duplicate rows.



Deduplicate by row - text - Cursor

A B

1 d:/urls.txt //Specify the path to a file

2 =file(A1).cursor@s() //Open the file and create a cursor by 
row

3 =A2.groupx(_1) //Group by default field name _ 1

4
=file(filename@d(A1)+
"\\"+filename@n(A1)+
"_2."+filename@e(A1))

//Construct output file under the 
same path

5 for A3,1000 =A4.export@a(A5)

There is a slight difference compared with the last section. When using cursor 
to handle grouping, you must specify the parameter of the grouping, and the 
return values are all sequence tables. Therefore, sequence tables should be 
used for calculation.

When the file is large (can’t be loaded into memory), it needs to 
be processed in blocks with cursor.

Only the s option is used to generate a cursor with only 
one column. Without the I option, when fetching, the 
default column name sequence table is returned.

Pay attention to the difference with the last section. The 
last section is a sequence, which is written out with write. 
The fetching in this section is a sequence table, which is 
exported with export. The a option still indicates the 
append method.



Novels copied from online posts（ novel.txt ） often have repeated 
paragraph.

Deduplicate by row - article

A B

1 =file("d:/novel.txt")) //Open the specified file

2 =A1.import@s() //Import content by row

3 =A2.derive(#:Row) //Add row number calculation column

4 =A3.group@1(_1) //Group by default column name _ 1

5 =A4.sort(Row) //Sort by row number

6 =A1.export(A5,_1) //Export sorted content

Add calculation column(Row) to the imported 
sequence table, the value of which is row number.

Only the_ 1 field is exported. All fields will be exported 
by default.

Deduplication for an article is different from the text, and the content after 
the deduplication can not be disrupted. Add row number to each row, which 
is used to restore the original order after grouping.



Deduplicate by row - article - Cursor

A B

1 d:/novel.txt //Specify the path to a file

2 =file(A1).cursor@s() //Open the file and create a cursor by 
row

3 =A2.derive(seq():Row) //Add row number calculation column

4 =A3.groupx(_1;min(Ro
w):Row)

/ / G r o u p  b y  f i l e d  _ 1 ,  k e e p  t h e 
minimum row number in duplicate 
rows

5 =A4.sortx(Row) //Sort by row number

6
=file(filename@d(A1)+
"\\"+filename@n(A1)+
"_2."+filename@e(A1))

//Construct output file under the 
same path

7 for A5,1000 =A6.export@a(A7,_1)

When obtaining the unique row of each group, pay attention to the 
difference:
1：With sequence, group@1() is used. With 1 option, can have no 
parameter
2：With sequence table, group@1(_1) is used. With 1 option，and with 
filed parameter. 
3：With sequence table cursor, groupx(_1;min(Row):Row) is used. Without 
option, with grouping filed, and with output row aggregation function.

When the file is large (can’t be loaded into memory), it needs to 
be processed in blocks with cursor.

Note that the sequence number expression is seq(), which is different from 
the # in the sequence table. # is the sequence number in the sequence 
table; the cursor will fetch data by blocks, and the # of subsequent blocks 
will start from 1, so you need to use the function seq() to get the correct 
consecutive sequence number.



THANKS


