

1
2
3
4CONTENTS

5
6
7

01

Pivot of database

Class StudentID Subject Score

Class one 1 Math 89

Class one 1 Chinese 93

Class two 2 Math 92

Class two 2 Chinese 97

Class MathMax ChineseMax

Class one 89 93

Class two 92 97

Pivot function of database supports row to column conversion

The following is the student scores table. The highest scores of each subject in each class are
counted and displayed by column.

Pivot of database

The SQL statement is as follows:

select * from (select Class, Subject, Score from StudentScore)
pivot (
 max(Score) for Subject in (
 'Math' as MathMax, ‘Chinese' as ChineseMax
)
)

Here is an example of Oracle. Not all databases have pivot functions. Pivot is only supported in new versions of mainstream
databases.

Pivot of SPL

Class Subject MaxScore

Class one Math 89

Class one Chinese 93

Class two Math 92

Class two Chinese 97

Then use pivot function of SPL to make
row to column conversion.

Class MathMax ChineseMax

Class one 89 93

Class two 92 97

First, get the highest scores of each subject from the database.

Pivot of SPL

The SPL script is as follows:

A1：Connect database.
A2：Fetch data from database， and the highest scores of each subject are calculated directly here.
A3： The pivot function is used to realize row to column conversion.

A
1 =connect("oracle")
2 =A1.query("select Class, Subject, max(Score) MaxScore from

StudentScore group by Class, Subject")
3 =A2.pivot(Class; Subject, MaxScore; "Math":"MathMax",

"Chinese":"ChineseMax")

Row to column transposition summary

For example, MySQL does not have pivot function. It needs to use sub query to group and
aggregate, then left join to realize row to column conversion.

Not all databases support pivot.

It is difficult for SQL statement to handle the situation that inter column calculation
is needed after row to column conversion. SQL cannot solve the situation of
multiple data sources.

SPL's pivot is more adaptable.

02

Unpivot of SQL

The following is the student scores table. Query the highest score of the students.

StudentID Math Chinese

1 89 93

2 92 97

3 91 88

StudentID BestScore

1 93

2 97

3 91

The unpivot function of database supports
column to row conversion.

Unpivot of SQL

Take Oracle as an example. The SQL statement is as follows：

With
T1 as (select * from StudentScore unpivot (Score for Subject in
(Math, Chinese)))
select StudentID, max(T1.Score) BestScore from T1 group by
StudentID

Column to row conversion of SPL

Column to row conversion of SPL looks clearer. The first step is to turn the column into a row, and
the second step is to get the highest score of each student by grouping and aggregation.

StudentID Math Chinese

1 89 93

2 92 97

3 91 88

StudentID BestScore

1 93

2 97

3 91

StudentID Subject Score

1 Math 89

1 Chinese 93

2 Math 92

2 Chinese 97

3 Math 91

3 Chinese 88

Column to row conversion of SPL

The SPL script is as follows:

A1：Connect database. A2：Read student score table.
A3：Use the @r option of the pivot function to implement column to row transposition.
A4： For the data after transposition, the maximum value is taken after grouping by student ID.

A
1 =connect("oracle")
2 =A1.query("select * from StudentScore")
3 =A2.pivot@r(StudentID; Subject, Score; Math:"Math", Chinese:"Chinese")
4 =A3.groups(StudentID; max(Score):BestScore)

03

Bidirectional transposition

The sales table classified by channel and recorded by date is as follows:

Day Online Store
20190101 2400 1863

20190102 1814 670

20190103 3730 1444

Category 20190101 20190102 20190103

Online 2400 1814 3730

Store 1863 670 1444

Need to convert to the following:

Bidirectional transposition

First, the columns are converted to rows, converting online and store to field values for category column.

Day Online Store
20190101 2400 1863

20190102 1814 670

20190103 3730 1444

Category 20190101 20190102 20190103

Online 2400 1814 3730

Store 1863 670 1444

Day Category Sales
20190101 Online 2400

20190101 Store 1863

20190102 Online 1814

20190102 Store 670

20190103 Online 3730

20190103 Store 1444

Then row to column conversion, the unique value of the day field value is converted to the column names.

Bidirectional transposition

The SPL script is as follows:

A
1 =connect("db")
2 =A1.query("select * from Sales")
3 =A2.pivot@r(Day; Category, Sales)
4 =A3.pivot(Category; Day, Sales)

A3：Use pivot@r to make column to row conversion, converting online and store to field values for category column.
A4：Use pivot to make row to column conversion, convert the unique value of the day field value to the column names.

Pivot function summary

 When the number of rows and columns does
not change, it is convenient to use pivot function
directly to implement transposition. When two-way
transposition is needed, the pivot and pivot @r
functions of SPL can solve the problem.

In the face of the dynamic transpose of uncertain
table structure after transpose, pivot function is not
competent. We wil l provide solut ions in later
chapters.

Pivot function is suitable for static
transposition

04

1. Pivot function generates columns automatically

There is an employee table, which records the Department, location and income of employees, as shown in
the following figure:

Name Dept Area Salary
David Sales Beijing 8000

Daniel R&D Beijing 15000

Andrew Sales Shanghai 9000

Robert Sales Beijing 26000

Rudy R&D Shanghai 23000

Dept Beijing Shanghai …

Sales 13000 11000 …

R&D 15000 14000 …

Calculate the average salary of each department in different regions. Now I don't know which regions, I want
to convert it into the following results:

1. Pivot function generates columns automatically

This example is row to column conversion. The target column needs to be extracted from the data. Pivot function
supports semi dynamic transpose. When the target column (source column) is not specified, it will automatically
find all columns not in the group.

The SPL script is as follows:

A
1 =connect("db")
2 =A1.query("select Dept,Area,avg(Salary) as AvgSalary from Employee group

by Dept,Area")
3 =A2.pivot(Dept; Area, AvgSalary)

A1：Connect data source.
A2：Take the average salary grouped by department and area from the employee table.
A3： The pivot function is used for row to column conversion, where the target column is omitted.

2. Dynamic row and column transposition

There is a personal income table, as shown in the following figure:

Name Source Income
David Salary 8000

David Bonus 15000

Daniel Salary 9000

Andrew Shares 26000

Andrew Sales 23000

Robert Bonus 13000

Category Source1 Income1 Source2 Income2

David Salary 8000 Bonus 15000

Daniel Salary 9000

Andrew Shares 26000 Sales 23000

Robert Bonus 13000

Everyone's income source may be different, and we want to convert it into the following results:

2. Dynamic row and column transposition

We are not sure about the number of columns or even the names of columns after row to column conversion. At
this point, you can't use the pivot function, but you need to use the dynamic transpose method.

The SPL script is as follows:

A B
1 =connect("db") =A1.query("select * from Income")
2 =B1.group(Name) =A2.max(~.len())
3 =create(Name, ${B2.("Source"+string(~)+", Income"+string(~)).concat@c()})
4 for A2 =A4. Name | A4.conj([Source, Income])
5 >A3.record(B4)

A3: determine the number of columns according to the maximum number of group members after grouping, and dynamically generate
column names to create a sequence table.
A4~B5：Loop members of income table after grouping, put together the name, income source and income amount of each group, and
add them to the sequence table created by A3.

Dynamic row and column transposition summary

 The key of dynamic transposition is to calculate the
target data structure first. After the table structure is
determined, the data is put together into records
according to the data structure and inserted into the
target table. This idea is also applicable to some
static transposes.

Dynamic transpose calculates target data
structure first

3. Complex static row column transposition

Let's take another example. There is a table for recording daily attendance information, as shown in the
following figure:

Per_Code in_out Date Time Type
1110263 1 2013-10-11 09:17:14.0000000 In
1110263 6 2013-10-11 11:37:00.0000000 Break
1110263 5 2013-10-11 11:38:21.0000000 Return
1110263 0 2013-10-11 11:43:21.0000000 NULL
1110263 6 2013-10-11 13:21:30.0000000 Break
1110263 5 2013-10-11 14:25:58.0000000 Return
1110263 2 2013-10-11 18:28:55.0000000 Out

Per_Code Date In Out Break Return
1110263 2013-10-11 9:17:14 18:28:55 11:37:00 11:38:21
1110263 2013-10-11 9:17:14 18:28:55 13:21:30 14:25:58

Every seven pieces of data are in a group. We want to convert them into the following results:

3. Complex static row column transposition

Although the structure of the transposed table can be determined, it is very complex to implement it with pivot.
You can create the target data structure first, and then fill in the data.

The SPL script is as follows:

A B
1 =connect("db").query("select * from DailyTime

order by Per_Code,Date,Time")
=A1.group(Per_Code,Date)

2 =create(Per_Code,Date,In,Out,Break,Return) =B1.([1,7,2,3,1,7,5,6].(B1.~(~)))

3 =B2.conj([~.Per_Code,~.Date]|~.(Time).m([1,2,3,
4])|[~.Per_Code,~.Date]|~.(Time).m([5,6,7,8]))

>A2.record(A3)

A1: Query data and group by person code, date and time. B1：Group by person code and date.
A2：Create an empty sequence table to store the final result.
B2: For each group, take out the first, seventh, second, third, first, seventh, fifth and sixth records in turn, which is an orderly all day
record.。
A3：Organize all the data of each record into a sequence. B3：Add records to the sequence table created by A2.

4. Complex dynamic row column transposition

There are two tables, the user table and the record table, indicating that the user has an active
record on a certain day. Two tables are joined by user ID, as in the following figure:

To display whether the user has a record of activities every week in 2018, as in the following
table:

User

ID

Name

Record

ID

Date

Week User1 User2 User3
1 Yes No Yes

2 Yes Yes No

3 Yes No Yes

4 No Yes Yes

4. Complex dynamic row column transposition

This example looks a little more complicated, but the idea is the same. Create the target data structure first, and
then fill in the data.

The SPL script is as follows:

A B
1 =connect("db").query("select t1.ID as ID, t1.Name as Name, t2.Date as Date from

User t1, Record t2 where t1.ID=t2.ID")

2 =A1.derive(interval@w("2018-01-01",Date)+1:Week) =A2.max(Week)

3 =A2.group(ID) =B2.new(~:Week,${A3.("\"No\":"
+Name).concat@c()})

4 =A3.run(~.run(B3(Week).field(A3.#+1,"Yes")))

A1：Query user table and record table, and join by user ID. A2：Calculate the week number according to the date.
B2：Find the largest week number. A3： Group by user ID.
B3：Create an empty sequence table according to the maximum weekly number, and assign the default value "no“.
A4: For each group of data, locate the corresponding record in the target table through the weekly sequence number, and replace the
user value with "yes".

05

Row column transposition is often accompanied by inter column calculation, such as the following data:

ID customID name amount_payable due_date amount_paid pay_date

112101 C013 CA 12800 2014-02-21 12800 2014-12-19

112102 C013 CA 3500 2014-06-15 3500 2014-12-15

112103 C013 CA 2600 2015-03-21

name 1 2 3 4 5 6 7 8 9 10 11 12

CA 12800 12800 12800 12800 3500 3500 3500 3500 3500 3500 3500

…

It is required to output the monthly payable amount according to the specified year (such as 2014). If there is
no data of the current month, the payable amount of the current month is the value of the previous month.

The calculation process is still to generate an empty result set first and then append data. The difference is that
the data to be appended here needs a series of calculations. The SPL script is as follows:

A B
1 =connect("db").query("select * from Payment.txt where year(due_date)=2014")

2 =create(name,${12.().string@d()}) =A1.group(customID)

3 for B2 =12.(null)

4 >A3.run(B3(month(due_date))= amount_payable)

5 >B3.run(~=ifn(~,~[-1]))

6 =A2.record(B2.name|B3)

A1: Query 2014 data. A2: Generate a result empty sequence table with 12 months. A3：Group by customID.
A3 ~ B6: Loop the group, B4 sets the payable amount of the corresponding month, B5 sets the blank value to the value of the previous
month, and B6 inserts the record into the result sequence table.

06

1. Dynamic insertion of sub table into main table

The order table and order detail table are the main sub table relationship. Each order has multiple details, as in the
following figure:

Order

ID

Customer

Date

OrderDetail

OrderID

Number

Product

Amount

★

★

★

The detail data of each order in the order table is variable in length. To find out the following table:

ID Customer Date Product1 Amount1 Product2 Amount2 Product3 Amount3

1 3 20190101 Apple 5 Milk 3 Salt 1

2 5 20190102 Beef 2 Pork 4

3 2 20190102 Pizza 3

1. Dynamic insertion of sub table into main table

The SPL script is as follows:

A B
1 =connect("db") .query("select * from OrderDetail left join Order on

Order.ID=OrderDetail.OrderID")
2 =B1.group(ID) =A2.max(~.count()).("Product"+string(~)+

","+"Amount"+string(~)).concat@c()
3 =create(ID,Customer,Date,${B2}) >A2.run(A3.record([ID,Customer,Date]|~.

([Product,Amount]).conj()))

A1：Join the order table and order detail table to retrieve data. A2：Group by order ID.
B2~A3：According to the group with the largest number of members in the group, dynamically generate column names and create
sequence table.
B3：Loop the members after grouping, and dynamically put together the data of each group and add them to the sequence table
created by A3.

2. Multi table join column to row conversion

There are three tables, namely, student table, exam table and retest table. Stu_id is the join field, as shown in the
following figure:

Students

stu_id

stu_name

class_id

Exam

stu_id

subject

score

★

Now we need to query three tables to get the scores of each subject, total score and scores of each student, as shown
in the following figure:

stu_id stu_name Chinese_score Math_score total_score Chinese_retest Math_retest
1 Ashley 80 77 156
2 Rachel 58 67 125 78
3 Emily 85 56 141 82

Retest

stu_id

subject

score

2. Multi table join column to row conversion

The SPL script is as follows:

A B
1 =connect("db"). query("select t1.stu_id stu_id,t1.stu_name stu_name,t2.subject subject,t2.score

score1,t3.score score2 from Students.txt t1 left join Exam.txt t2 on t1.stu_id=t2.stu_id left join
Retest.txt t3 on t1.stu_id=t3.stu_id and t2.subject=t3.subject order by t1.stu_id,t2.subject")

2 =A1.group(stu_id) =A1.group(subject)

3 =create(stu_id,stu_name,${(B2.(~.subject+"_score")|"total_score"|B2.(~.subject+"_retest
")).string()})

4 >A2.run(A3.record([stu_id,stu_name]|B2.(~(A2.#).score1)|A2.sum(score1)|B2.(~(A2.#).score2)))

Inter-table join transposition summary

 First, the data tables are joined into a single
table through association relationship. Next, it's
similar to the transpose introduced earlier.
 SPL sequence table supports rich functions
and can meet most of the operation requirements.

Inter-table join transposition needs to join first

07

Divided by columns

There is a world urban population table, as shown below：

List the names and population of cities with a population of more than 2 million in Europe and Africa in
separate columns (each column is sorted in descending order). The expected result is as follows:

Continent Country City Population

Africa Egypt Cairo 6789479

Asia China Shanghai 24240000

Europe Britain London 7285000

Europe City Population Africa City Population
Moscow 8389200 Cairo 6789479

London 7285000 Kinshasa 5064000

St Petersburg 4694000 Alexandria 3328196

Divided by columns

The idea of column dividing is also to create the target data structure first, and then fill in the data.
The SPL script is as follows:

A B
1 =connect("db").query("select * from World where Continent in('Europe', 'Africa') and Population

>= 2000000")

2 =A1.select(Continent:"Europe") =A1.select(Continent:"Africa")

3 =create('Europe City',Population,'Africa City',
Population)

=A3.paste(A2.(City),A2.(Population),B2.(City),B
2.(Population))

A1: Connect to the database and retrieve data to select records of more than 2 million people in Europe and Africa.
A2~B2：Take data from Europe and Africa respectively.
A3: Create an empty sequence table according to the target structure. B3: Paste the value sequence directly to the corresponding
column using the paste function of the sequence table.

