

Develop reports efficiently with esProc

1 Abstract

Report-developing is the essential module of many web application systems, and it’s still the basic

function of most of the BI projects. With the coming of data era, the data comes from increasingly diverse

sources (text, excel, monogdb, redis, es...), which brings great challenges for the data preparation of

reports. Traditionally, it is better to first put the data out of the database into the database, and then use the

computing power of the database (writing SQL or stored procedures) to prepare the data for the report. Due

to the dependence on pre-import, the real-time performance of reports can not be guaranteed, and the

development process of reports has also been lengthened. With the increasing demand for reports, the

database has become more and more bloated, and the management cost has been rising.

But if we use these data directly for report development, it is always time-consuming and laborious,

and the performance of the final report is often not good enough. As programmers who are familiar with

report development know, reporting tools provide only a few simple capabilities for computing such out-of-

database data. When the computational requirements are complex, they need to be extended out of

reporting tools and implemented in a user-defined way. This kind of computation is usually implemented in

high-level language (Java, .net) by hard-coding, where strong data programming experience is required,

often beyond the capabilities of ordinary report developers. The development cost of high-level language

implementation is very high, and it is not reusable.

Even when data is in a database, computing complex reports often requires advanced window

functions or stored procedure, which are exactly the shortcomings of open source databases（mysql,

hive…）. It is much better for commercial databases in this respect, but the task is still not easy to

implement. Usually, advanced extensions of SQL are needed. Since different database vendors have

different SQL extensions, experts who are proficient with certain databases are neededed to complete the

task. It's not easy to get familiar with all kinds of databases and become a master of SQL. How can

ordinary report developers solve these problems easily in the same way? In addition, stored procedures and

databases are coupled together, which will bring huge overhead to database operation and troublesome

maintenance.

If there is a computing engine with the same computing power as the database, without importing

data, directly calculating data from various sources, providing general high-level window functions and

stored procedures, preparing data independently for reports, and solving the above problems, it will greatly

improve the development progress and application effect of reports.

The above mentioned is the original intention of the design of the integrated version of esProc. Here,

by introducing its application structure, esProc’s ease of use is illustrated with examples, and the practical

value of esProc in the application scenario of the report is demonstrated with the open source reporting

tools.

2 Application architecture

Just like when database acts as the data source of reporting tools, esProc can also be the data source

for reporting tools through JDBC interface when it is embedded in the reporting tools. Only that SQL is

excecuted when database is connected and SPL (esProc script language) is excecuted when esProc is

connected to the reporting tools.

3 Development environment

Cell style coding

In esProc, the coding language is called SPL (Structured Process Language). The SPL script is written

in cells, just like in Excel. The result of SPL execution within a cell is assigned to the cell address, and cell

addresses are subsequently referred to directly as variable names. The codes are in cell order, first from left

to right, then from top to bottom.

Datasource connection

Connect with database (the built-in HSQL sample database), which has the name demo.

From the demo database, import all records of the STATES table and CITES table.

STATES.txt and CITIES.xlsx are tables exported from demo database in advance. Except for the

different ways of data acquisition, the results of A2 and B2, A3 and B3 are the same. Once the data is

loaded into esProc from various data sources, it becomes the data object inside the esProc, which makes no

difference in use.

SPL Syntax

Report developers are familiar with SQL. Here are a few simple examples to get a preliminary

understanding of SPL syntax.

①Select

 A B

1 =file("STATES.txt").import@t()

2 =demo.query("select NAME as STATE,CAPITAL from STATES") =B1.new(NAME:STATE,CAPITAL)

Select the required fields from the data table, and the results in A2 and B2 are the same:

②Filter

 A B

1 =file("STATES.txt").import@t()

2
=demo.query("select NAME as STATE,CAPITAL

from STATES where POPULATION>15000000")

=B1.select(POPULATION>15000000).new(NAME:STATE

,CAPITAL)

In A2 and B2, the data of states with a population of more than 15,000,000 are selected and the results

are the same:

③Distinct

 A B

1 =file("CITIES.xlsx").importxls@tx()

2 =demo.query("select distinct STATEID from CITIES") =B1.id(STATEID)

In A2 and B2, the distinct STATEID of all the cities in the CITIES table is acquired and the results are

the same:

④Order by

 A B

1 =file("CITIES.xlsx").importxls@tx()

2 =demo.query("select * from CITIES order by NAME") =B1.sort(NAME)

3 =demo.query("select * from CITIES order by NAME desc") =B1.sort(NAME:-1)

in A2 and B2, sort data by city name in ascending order:

in A3 and B3, sort data by city name in descending order:

⑤Group and aggregation

 A B

1 =file("CITIES.xlsx").importxls@tx()

2
=demo.query("select STATEID, count(*) as CITYCOUNT from

CITIES group by STATEID")
=B1.groups(STATEID;count(~):CITYCOUNT)

The SQL in A2 groups and counts the total number of cities of each state in CITIES table, and the

result is as follows:

The groups function in B2 divides the data in the target table into groups. Semicolon is the function

level separator, separating different types of parameters (parameters of the same type are separated by

comma). ~ is wildcard, just like * in SQL, and here ~ represents a row of data abstractly. count() is

aggregation function. The result is as follows:

The aggregation result is the same by the two types of methods, but in esProc sorting according to the

grouping value is automatically achieved during the group and aggregation.

4 Integration in reporting tools

esProc can be easily integrated in reporting tools like BIRT or JasperReport. Below we’ll introduce the

integration process briefly, taking integration in BIRT as an example. For integration details,please refer to

the documents listed on Raqsoft official website. The process of integration with other reporting tools or BI

systems is similar.

Load JDBC drivers

Copy 3 esProc basic jars from esProc[installation directory]\esProc\lib to Birt[installation

directory]\plugins\org.eclipse.birt.report.data.oda.jdbc_4.6.0.v20160607212\driver. Note: The upper

directory names of driver are slightly different for different BIRT versions.

dm.jar esProc computing engine and JDBC drivers

 icu4j_3_4_5.jar Handling internationalization

jdom.jar Parsing configuration files

Load config file

Copy raqsoftConfig.xml from [installation directory]\esProc\config to Birt[installation

directory]\plugins\org.eclipse.birt.report.data.oda.jdbc_4.6.0.v20160607212\driver. The raqsoftConfig.xml

file includes information like license, esProc main path, search path for dfx files, etc.

Open raqsoftConfig.xml, configure the license information.

...

 <Esproc>

<license>esproc.xml</license>

 <!—Business license or trial license, trial license can be downloaded from official webset-->

 <!—License file path, which can be absolute path or relative path,the relative path is relative to the classpath-->

</Esproc>

...

Add new datasource

Add new report, select “JDBC Data Source” under “DataSources”, and input “esprocJDBC” under “Data

Source Name”.

Click【Next】，select com.esproc.jdbc.InternalDriver (v1.0) in the drop-down list of the Driver Class

and enter the database URL jdbc:esproc:local://. Leave both the user name and the password blank.

Click【Test Connection】，if “Connection successful” is prompted, then esprocJDBC is successfully

connected. Then click【OK】，the new datasource is successfully created.

Add new dataset

 Create a new data set by selecting the data source just configured. The data set type is SQL stored

procedure Query. The name of data set is SPLDataSet.

Click【Next】, then define a query text. Combine the SPL codes in B1 and B2 of example① into one

sentence, and enter as query text.

Click on “Preview Results”, and the results are displayed as follows:

Call the data set in a BIRT report, and the result is as follows:

At present, only one line of SPL codes can be called through BIRT query textbox. If you want to

execute multiple lines of SPL codes, you need to save the SPL codes into a file under esProc IDE. The

extension name of the file is dfx.

 A B

1 =file("STATES.txt").import@t()

2
/=demo.query("select NAME as STATE,CAPITAL

from STATES where POPULATION>15000000")

=B1.select(POPULATION>15000000).new(NAME:STATE

,CAPITAL)

As with the above mentioned example②, comment the codes that call data from the database, retain

the codes that call data from text file, and then filter the records. Save the SPL codes into file test1.dfx.

Copy the dfx file into the directory that is specified by <mainPath>C:\work\test_esproc</mainPath> from

raqsoftConfig.xml. And then we only need to enter the SPL script file name test1 into the query textbox

under stored procedure.

Click on the “Preview Results”, and the filtered results are displayed:

Call the data set in a BIRT report, and the result is as follows:

5 Application scenarioes

Multiple data sources

The source data of many reports doesn’t only come from relational database. It may also come from

NoSQL database, local files, WebService etc. The reporting tools lack the unified data acquisition interface

and syntax for these non-relational database data sources, and some reporting tools can’t perform the basic

filtering operation. While some filtering or even join operations are normally needed in the creating process

of a report. Reporting tools do have some computation ability, but they can only handle a certain amount of

data because they are using in-memory calculating. When the data is huge, reporting tools will face the

problem of capacity overloading. Moreover, most reporting tools can’t handle multiple layer of data like

json or XML, and they also lack the capability of flexible coding.

If esProc is used to prepare data for the reporting tools, the non-database data can be directly used,

without the need to be imported into an intermediate database, and the workload is greatly reduced.

With its independent computational mechanism, esProc handles the various types of data sources in the

same way, enabling a consistent computational ability in them. esProc’s homogeneous approach of

handling the heterogeneous data sources reduces code migration cost and the learning cost.

Here are two examples of common JSON computing problems.

1、 JSON group and aggregation: order.JSON contains the order records. The requirement is to

calculate the sales amount that each client contributes per month in a specified time period. Below

is a selection of the source data:

[{OrderID:"26",Client:"TAS",SellerId:"1",Amount:2142,OrderDate:"05-08-2009 00:00:00"},

{OrderID:"33",Client:"DSGC",SellerId:"1",Amount:613,OrderDate:"14-08-2009 00:00:00"},

{OrderID:"84",Client:"GC",SellerId:"1",Amount:89,OrderDate:"16-10-2009 00:00:00"},

{OrderID:"133",Client:"HU",SellerId:"1",Amount:1420,OrderDate:"12-12-2010 00:00:00"},

{OrderID:"32",Client:"JFS",SellerId:"3",Amount:468,OrderDate:"13-08-2009 00:00:00"}…

The corresponding esProc codes:

 A

1 =file("D:\\order.JSON").read().import@j()

2 =A1.select(OrderDate>=argBegin && OrderDate<=argEnd)

3 =A2.groups(month(OrderDate):Month,Client;sum(Amount):subtotal)

Import the JSON file as a two-dimensional table and perform a conditional query and then the grouping and

aggregation. argBegin and argEnd are parameters. Here’s the result:

2、 testServlet returns JSON format strings of employee information. Now query the data according

to the given condition and return result to Java main program in JSON format:

 A

1 =httpfile("http://localhost:6080/myweb/servlet/testServlet?table=employee&type=json")

2 =A1.read()

3 =A2.import@j()

4 =A3.select(${where})

5 =export@j(A4)

Read in the httpfile object and parse the JSON format strings to generate a two-dimensional table,and then

filter the table according to the condition and export the result as JSON format strings. The parameter

where is the dynamic querying condition, like BIRTHDAY>=date(1981,1,1) && GENDER=="F".

Cross-database hybrid operations

Relational databases’ ability of maintaining transaction consistency hasn’t yet been challenged. A

transaction processing system is still established on the relational database.

Under this circumstance, to create a real-time T+0 report based on all available data, you need to keep huge

historical data in the database for storing current transaction data. A database with huge capacity is thus

required, which in turn increases the cost. Even if the cost is acceptable, the ever-increasing data amount

will ultimately affect the transactional performance to an unacceptable level.

A general solution is to move a part of the historical data out to establish a sub-database, making sure that

the transaction processing system operates without too much burden. But this will involve cross-database

querying, complicating the development of a T+0 report.

Many databases support the cross-database operations, requiring that the databases involved should be of

the same type. Different from handling current transaction data, historical data handling involves larger

amount of data but requires no transaction consistency. This means users are likely to store the historical

data in a data warehouse with a different structure.

However, even with databases of the same structure, the way of performing a cross-database operation is to

map the data table in one database into the currently in use database. Actualy the operation takes place in

one database, with more communication cost of data transmission, unsatisfactory performance and low

steadiness.

eProc can handle this cross-database operation easily and effectively.

With its own computing engine, esProc is independent of the database. The database data, however, will

still be handled in their place. esProc issues SQL statements to the involved databases through multiple

parallel threads, databases will then perform the parallel processing and return results to the esProc for

aggregation, and the aggregate results will be returned to the reporting tool for presentation. This system is

easy to scale out, allowing multiple databases of historical data with different structures.

esProc also supplies the server-based cluster computing model. Rather than storing historical data in a

database, esProc server allows placing the data in a file system with better I/O performance. The

cooperation of the cluster computing and the storage plan brings a higher performance with lower cost.

Here is an example:

A telecom enterprise stores user service information with the table userService. T+0 report needs to

show the duration of calls, the number of calls, the duration of calls to the local area and the number of

calls to the local area of various telecom products. In actual use, it is found that the amount of data is too

large and the query efficiency is very low, which results in poor report performance.

The performance can be greatly improved by using the computing layer instead. The specific method

is to store the table userService in several databases in different areas, and then use the computing layer for

parallel computing.

In esProc, the script is as follows:

 A B

1 [mysql1,mysql2,mysql3,mysql4]

2 fork A1 =connect(A2)

3 =B2.query@x("select product_no,sum(allDuration) sallDuration,sum(allTimes)

sallTimes,sum(localDuration) slocalDuration ,sum(localTimes) slocalTimes from userService where

I0419=? group by product_no", argType)

4 =A2.conj()

5 =A4.groups(product_no;sum(sallDuration):ad,sum(sallTimes):at,sum(slocalDuration):ld,sum(slocalTimes):lt)

Statement fork uses four threads in parallel. Each thread takes data from the corresponding database,

and returns the grouped and aggregated results to the main thread. The main thread merges the calculation

results of each sub-thread, performs the grouping and aggregation again, and finally obtains the result set

required by the report.

General reporting tools do not have the ability to collect data in parallel and need to be completed by

Java and other high-level languages. However, Java parallel code is difficult to write and lacks the ability of

structured computing. Compared with independent computing layer, there is still a gap.

Out-database stored procedures

It’s not easy to write a stored procedure. The traversal-style code only has an adequate performance but

with very poor portability. The principle is that you should use as few stored procedures as possible.

esProc helps cut down the procedures in the database greatly. An algorithm will be stored and managed

along with the report template in file system and become a part of the reporting module. This will reduce its

coupling with the other parts of the application while won’t add more coupling with other applications.

Yet stored procedures are necessary in some cases where they are used to pre-process the source data whose

amount is too large to be moved out of the database.

Here are two examples:

1、 Calculate the excellent products whose sales amounts are within top 10 of each and every state.

Database table stateSales stores the sales information for products in each state, with three fields:

state, product, amount. Some of the records are duplicated. Now we need to remove the duplicated records

and calculate the excellent products whose sales amounts are within top 10 of each and every state, and

finally represent the excellent products information in the report.

Previously, stored procedures were used to calculate excellent products. The codes are as follows:

01 create or replace package salesPkg

02 as

03 type salesCur is ref cursor;

04 end;

05 CREATE OR REPLACE PROCEDURE topPro(io_cursor OUT salesPkg.salesCur)

06 is

07 varSql varchar2(2000);

08 tb_count integer;

09 BEGIN

10 select count(*) into tb_count from dba_tables where table_name='TOPPROTMP';

11 if tb_count=0 then

12 strCreate:='CREATE GLOBAL TEMPORARY TABLE TOPPROTMP (

 stateTmp NUMBER not null,

 productTmp varchar2(10) not null,

 amountTmp NUMBER not null

)

 ON COMMIT PRESERVE ROWS';

13 execute immediate strCreate;

14 end if;

15 execute immediate 'truncate table TOPPROTMP';

16 insert into TOPPROTMP(stateTmp,productTmp,amountTmp)

 select state,product,amount from stateSales a

 where not(

 (a.state,a.product) in (

 select state,product from stateSales group by state,product having count(*) > 1

)

 and rowid not in (

 select min(rowid) from stateSales group by state,product having count(*)>1

)

)

 order by state,product;

17 OPEN io_cursor for

18 SELECT productTmp FROM (

 SELECT stateTmp,productTmp,amountTmp,rankorder

 FROM (SELECT stateTmp,productTmp,amountTmp,RANK() OVER(PARTITION BY stateTmp ORDER BY

amountTmp DESC) rankorder

 FROM TOPPROTMP

)

 WHERE rankorder<=10 order by stateTmp

)

 GROUP BY productTmp

 HAVING COUNT(*)=(SELECT COUNT(DISTINCT stateTmp) FROM TOPPROTMP);

END;

These coupling problems can be avoided by using esProc to implement the same algorithm. Following

are the esProc scripts:

 A

1 $select state，product，amount from stateSales

2 =A1.group@1(state,product)

3 =A2.group(state) =A3.(~.rank(amount).pselect@a(~<=10))

4 =A3.(~(B3(#)).(product))

5 =A4.isect()

Remove the duplicates in A2, group data according to state in A3, get the sequence numbers of the top

10 products of each group in B3, get the product records by sequence numbers in A4, Calculate the

intersection of groups in A5.

As mentioned in the integration in the reporting tools section, save the scripts mentioned above as

topPro.dfx, and then it’ll be called through JDBC in the reporting tool. The invocation method is the same

as the ordinary stored procedure. The call statement is: call topPro ()

The above scripts are clear and simple, and can be interpreted and executed. The development

efficiency is high and the maintenance is convenient. The scripts only need database select authorization,

and no additional authorizations are required for modification and editing. The scripts and the report

template are stored together in the file system, easy to be managed and maintained.

2、 Calculate "the top n customers with half of sales"

Some databases don’t have window functions (eg. Mysql), and some databases don’t have stored

procedures (eg. Vertica). In case of complex data computing, external scripts in Rython or R are needed.

However, these scripting languages and the mainstream engineering language (Java) are not well

integrated. If we want to implement the functions like SQL functions or stored procedures directly in

engineering languages, we usually need to write lengthy code for a particular computing requirement, and

the code is almost non-reusable.

 Even with powerful analysis functions, it is not easy to implement a slightly complicated logic. For

example, the following common business calculation, find out "the top n customers whose sales account for

half of the total sales, and sort them in descending order according to the sales volume". In Oracle, SQL is

implemented as follows:

with A as

(selectCUSTOM,SALESAMOUNT,row_number() over (order by SALESAMOUNT) RANKING

from SALES)

select CUSTOM,SALESAMOUNT

from (select CUSTOM,SALESAMOUNT,sum(SALESAMOUNT) over (order by RANKING) AccumulativeAmount

from A)

where AccumulativeAmount>(select sum(SALESAMOUNT)/2 from SALES)

order by SALESAMOUNT desc

First rank the cumulative value of sales from small to large, through the condition that the cumulative value

is greater than "half sales", the customers who account for half of sales are found in reverse. In order to

avoid errors in processing the same value of sales by window function when calculating cumulative value,

ranking is calculated by sub-query first.

Here's the code that implements the same logic with esProc:

 A B

1 =connnect("verticalCon") /connect to database

2 =A1.query("select * from sales").sort("SALESAMOUNT:-1")
/Sort the salesamount in

descending order

3 =A2.cumulate(SALESMOUNT)
/Calculate the cumulative

salesamount in scequence

4 =A3.m(-1)/2 /Calculate “half sales”

5 =A3.pselect("~>=A4")

/Find the position in cumulative

salesamount scequence fulfilling

the condition

6 =A2(to(A5))
/Find the position of “half sales”

and all records ahead of it

7 >A1.close() /close database connection

8 return A6 /return result

From the above code, we can see that esProc uses a simple set of syntax to implement the logic that needs

nested SQL plus window functions to achieve, and has universal consistency (source code is consistent for

any data).

Solution of SQL Difficulties

Grouped subsets

Except for data tables, SQL hasn’t any other explicit set data type. So it can’t help performing aggregation

after data grouping. Besides aggregate values, you may also take an interest in grouped subsets. But it’s

difficult to perform data handling directly on these subsets, and subqueries are needed.

With set data type and grouping functions that return subsets, esProc can easily handle the post-grouping

computations.

For example, you might want to find the records of all subjects for students whose total scores are equal to

or above 500. With SQL, you need to group records to calculate the total score for every student, select the

students whose scores are equal to or above 500, and then JOIN the resulting table with the original score

table or use IN statement to find the desired records, which is roundabout and needs to retrieve data

repeatedly. But in esProc, you can do this in a natural and straightforward way:

 A

1 =db.query("select * from R")

2 =A1.group(student).select(~.sum(score)>=500).conj()

There are many scenarios that require the returning of the records of the subsets after data grouping. For

those scenarios, the group and aggregate operations are intermediate steps towards completing a filtering,

rather than the goal.

In some other cases, though only the aggregate values are desired, the aggregate operations are difficult to

be expressed in simple aggregate functions and thus the grouped subsets need to be retained for the

computations.

Those cases are not uncommon in real-world businesses. But as the computations often involve a lot of

domain knowledge and are complicated, it’s inconvenient to cite an example. Here’s a simplified one.

The user login table L has two fields – user (ID) and login (time). Problem: Calculate the last login time of

each user and the number of logins within 3 days before this time.

It’s easy to find the last login time, but it’s difficult to count the logins during the specified time period

without retaining the grouped subsets. The SQL algorithm is like this: Group records to find the last login

times; perform JOIN with the source table to find records during the specified time period and again group

and aggregate these records. It’s roundabout and inefficient. esProc, however, can retain the grouped

subsets and thus can do this in a stepwise approach:

 A

1 =db.query("select * from L")

2 =A1.group(user;~.max(login):last,~.count(interval(login,last)<=3):num)

In the code, ~ represents the subset obtained after data is grouped by user.

For ordered data, here’s a more efficient way to get this done:

 A

1 =db.query("select * from L order by login desc")

2 =A1.group(user;~(1).login:last,~.pselect@n(interval(login,last)>3)-1:num)

Order-related aggregation

It’s also common to get the top N records and to find the record corresponding to the maximum value. Of

course the computations can be handled on the retained grouped subsets. But as they are too common,

esProc treats them as a kind of aggregation and provides a special function to handle in basically the same

way as handling the ordinary grouping and aggregation.

SQL lacks Set data type and discreteness. It’s unable to provide aggregate functions that can return a set of

records. SQL’s way is to use subqueries or other cumbersome tools, which often results in large-scale data

sorting, which, in turn, causes performance loss.

Let’s look at the simplest case. The user login table L has these fields – user, login (time), IP-address …

Problem: Find the record of first login of each user.

SQL can use the window function to generate sequence numbers after intra-group sorting and retrieve all

the records whose sequence numbers are 1. Window functions can only be employed on the result set, so a

subquery and then a filter are needed. The code thus becomes complicated. For databases that don’t support

window functions, it’s more difficult to do this.

esProc provides group@1 function to directly retrieve the first member of each group.

 A

1 =db.query("select * from L order by login")

2 =A1.group@1(user)

This type of log files is common and usually they are already ordered according to the time. esProc can get

the first record directly without doing sorting. Cursor can be used to handle this if the amount of data is too

big to be entirely loaded into the memory.

The stock price table S has three fields – code, date and cp (closing price). Problem: Calculate the latest rate

of increase for each stock.

The calculation involves records of the last two trading days. SQL will use two levels of window functions

to perform intra-group inter-row calculation and to retrieve the first row of the result. The coding is

complicated. esProc provides the aggregate function topN to directly return the related records as aggregate

values for further handling.

 A

1 =db.query("select * from S")

2 =A1.groups(code;top(2,-date)) /Get the records of the last two

trading days

3 =A2.new(code,#2(1).cp-#2(2).cp:price-rises) /Calculate the rate of increase

Instead of grouping records into subsets, esProc aggregate functions perform an accumulation, achieving a

better performance. They can also work in a cursor-based mode to handle the big data that cannot be

entirely loaded into the memory.

Records can be retrieved according to their sequence numbers if data is already ordered. This is more

efficient:

 A

1 =db.query("select * from S order by date desc")

2 =A1.groups(code;top(2,0)) /Get the first two records

directly

3 =A2.new(code,#2(1).cp-#2(2).cp:price-rises)

To find the record corresponding to the maximum value, and to get the first/last record are special cases of

the topN-style aggregation.

Order-related grouping

SQL only supports order-unrelated equi-grouping. Sometimes the grouping condition isn’t a value which

can be directly compared with every record. Instead, the grouping is more related to the order of the

records. In this case, window functions (or other more inconvenient tools) should be used to generate

sequence numbers first if SQL is used.

esProc offers ready-made functions for order-related grouping, making the computations involving

continuous intervals more convenient.

The income & expense table B has three fields – month, income and expense. Problem: Find the records

where a deficit exists for 3 or more continuous months.

 A

1 =db.query("select * from B order by month")

2 =A1.group@o(income>expense).select(~.income<~.expense && ~.len()>=3).conj()

The group@o function compares only the adjacent records and creates a new group once the adjacent value

changes. Each record can be profitable or unprofitable by comparing the income and expense fields. By

comparing between adjacent records, records can be divided into groups like profitable, unprofitable,

profitable…, get the unprofitable groups that have not less than 3 members and concatenate them.

You might also want to find in this table the maximum number of months when income increases

continuously. The algorithm can be this: when the income increases, put the current record and the previous

one into the same group; when the income decreases, put the record into a new group; finally get the

maximum of the numbers of members among the continuous increasing groups.

 A

1 =db.query("select * from B order by month")

2 =A1.group@i(income<income[-1]).max(~.len())

The group@i function will create a new group when the grouping condition changes, that is when the

income decreases.

SQL can handle both scenarios with its window functions, but the code would be very hard to understand.

The merging of intervals is another common type of order-related grouping computation. The event interval

table T has fields S (start time) and E (end time). Problem: Find the real length of time the whole event

takes by removing the overlapping time intervals from these intervals.

 A

1 $select S,E from T order by S

2 =A1.select(E>max(E{:-1}))
/Remove records where the time period is

completely covered

3 =A2.run(max(S,E[-1]):S)
/Remove the time intervals which are

completed covered

4 =A2.sum(interval@s(max(S,E[-1]),E)) /Calculate the total length of time

5 =A2.run(if(S<E[-1],S[-1],S):S).group@o(S;~.m(-1).E:E)
/Merge the overlapping time intervals by

start time

Here are solutions for different types of order-related grouping, which make the most use of the features of

the inter-row calculation and the order-related grouping. SQL cannot handle those scenarios by simply

using window functions. It needs to use the extremely difficult-to-understand recursive query.

Position-based operations

Sometimes you might want to use the sequence numbers to directly access members of an ordered set.

SQL, which is based on the mathematical concept of unordered sets, will first generate the sequence

numbers and perform conditional filtering before accessing members of the specified positions. This is very

troublesome to many computations.

esProc, however, adopts a mechanism based on the concept of ordered sets, allowing accessing members

directly with sequence numbers and bringing great conveniences.

For example, the median value of various prices is often desired in analyzing economic statistics:

 A

1 =db.query@i("select price from T order by price")

2 =A1([(A1.len()+1)\2,A1.len()\2+1]).avg()

Sequence numbers can be used in data grouping as well. The event table E has three fields – no, time and

act. The act field includes two types of values - start and end. Problem: Calculate the total length of time

the events take, that is, the sum of every time period that each pair of start and end defines.

 A

1 =db.query@i("select time from E order by time")

2 =A1.group((#-1)\2).sum(interval@s(~(1),~(2))

represents the sequence number of a record. group((#-1)\2) places every two records in one group; and

then calculate the length of total time for each group and perform aggregation.

You can make an inter-row reference between two neighboring records according to sequence numbers.

The stock price table S has two fields – date and cp (closing price). Problem: List the trading days when the

stock prices are above 100 and calculate the rates of price increase on those days.

 A

1 =db.query("select * from S order by date")

2 =A1.pselect@a(cp>100).select(~>1)

3 =A2.new(A1(~).date:date,A1(~).cp-A1(~-1).cp:price-rises)

The pselect function returns the sequence numbers of the members satisfying the specified condition.

According to the result, you can calculate the rate of increase easily, without having to calculate the rates of

increase for all days and then perform filtering as with the window functions.

Sometimes the grouping result is expected to be continuous ranges. So the missing empty subsets need to

be supplied. It’s troublesome to do this in SQL, because you should first create a set of continuous ranges

manually and then left join the data tables under processing, during which you have to use the subquery. Yet

esProc can use sequence numbers to realize the alignment grouping.

Here’s a simple transaction record table T, including no, date and amount fields. Problem: Cumulate the

transaction amounts week by week; the weeks without transaction records also need to be displayed.

 A

1 =db.query("select * from T order by date")

2 >start=A1(1).date

3 =interval(start,A1.m(-1).date)\7+1 /Calculate the total number of weeks

4 =A1.align@a(A2,interval(start,date)\7) /Group records by week; empty sets

probably exist

5 =A4.new(#:week,acc[-1]+~.sum(amount):acc) /Aggregate the weekly amount and

calculate the cumulative amount

Dynamic column handling

A thorough set orientation should also include column-based set operations.

As an interpreted language, SQL can improvise a dynamic data structure. But SQL regards columns as one

of the data attributes, which are static, so it doesn’t provide any column-based set operations. Consequently,

this becomes a headache in dealing with scenarios where the desired column data isn’t supplied or where a

standard approach is needed to handle many columns.

Inter-column aggregation

PE is a table recording results of physical education. It has the following fields – name, 100m, 1000m,

long-jump, high-jump, and … There are four grades - A, B, C and D – for evaluating the results. Problem:

Calculate the numbers of people in each grade for every event.

The algorithm is simple. You just need to union the results of all the events, group them and perform

aggregate. SQL will use a long union statement to combine the results of all events. That’s really tedious.

It’s complicated if the columns are indefinite because you need to obtain the desired column names

dynamically from the database to perform the union.

esProc supports column-based set operations. The fully dynamic syntax makes coding simple and easy:

 A

1 =db.query("select * from PE")

2 =A1.conj(~.array().to(2,)) /Concatenate the results for every event from

the second field onward

3 =A2.groups(~:grade;count(1):count) /Grouping and aggregation

Standard approach for transpositions

For simple static transpositions, some databases supply pivot and unpivot statements to implement them.

Databases that don’t support the statements can do this using complicated conditional expressions and

union statement. But usually the columns transposed from rows are dynamic. To handle this in SQL, you

need to first generate the target columns and rows and then compose another statement dynamically for

execution. SQL doesn’t support step-by-step calculation, and the code is complicated and difficult to

understand.

The student scores table R consists of these fields – student, semester, math, English, science, pe, art and …

Problem: Perform both the row-to-column transposition and column-to-row transposition to present data in

a structure as this – student, subject, semester1, semester2 …

esProc offers pivot function to perform the simple transposition:

 A B C

1 =db.query("select * from R")

2 =A1.pivot@r(student,semester;subject,score)

3 =A2.pivot(student,subject;semester,score)

To achieve the two-way transposition, A2 performs column-to-row transposition and A3 performs row-to-

column transposition.

There is also a standard method which is easier-to-understand yet slightly complicated:

 A B C

1 =db.query("select * from R order by student,semester")

2 =create(student,subject,${A1.id(semester).string()})

3 for A1.group(student) for 3,A1.fno() =A3.field(B3)

4 >A2.record(A1.student|A2.fname(B3)|C3)

5 return A2

A2 generates the target result set using a macro. The loop in A3 and A4 transposes rows and columns and

insert the result in the result set, which is the standard procedure for performing transpositions in esProc.

The stepwise approach makes code clear and easy-to-understand. The approach applies to static

transposition or one-way transposition and the code would be even simpler. esProc’s column access scheme

and its flexibility characteristic of a dynamic language enables programmers to handle all types of

transpositions, including static/dynamic transpositions, row-to-column transposition, column-to-row

transposition, two-way transposition, in one standard approach.

Extended transpositions

Here’s the account state table T:

seq acount state date

1 A over 2014-1-4

2 A OK 2014-1-8

3 A lost 2014-3-21

…

Problem: Export the status of the accounts per day for a specified month; if there’s no record for an account

on a certain date, then use the status of the previous date:

account 1 2 3 4 5 6 7 8 9 … 31

A over over over over OK OK … OK

...

Strictly speaking, the transposition is static. But it involves a lot of regular columns and is not easy to be

expressed completely in a static way. It involves inter-column calculations as well, which are hard to be

coded in SQL even using pivot statements.

The job can easily get done using the standard esProc way:

 A B

1 =db.query("select * from T where year(date)=? and month(date)=?",2014,1)

2 =create(account,${to(31).string()})

3 for A1.group(account) =31.(null)

4 >A3.run(B3(day(date))=state)

5 >B3.run(~=ifn(~,~[-1])

6 >A2.record(A3.account|B3)

7 return A2

Here’s only one loop because it is the one-way transposition. In B3-B5, the calculation of getting data to be

inserted to the result set according to esProc syntax is a little complicated. Yet the whole procedure is the

same.

6 Ease of use

esProc SPL is a DSL (Domain Specific Language) specifically designed to process structured data. It

is unlike common languages, whose target range covers everything. It's easy to master through short

practice. It has the properties of step-by-step processing and intermediate result reference. It is easier to

implement than SQL in the face of complex requirements. The data structure is simple and the syntax is

concise. It is easier to learn and use than Python.

Simple interface, easy debugging

Syntax is simple, easy to learn and use.

Comparison with SQL

Example 1：

Example 2：

Example 3：

Comparison with Python

Example 1：

Example 2：

Example 3：

7 Contact us

esProc is a set of middleware which runs on JVM and deals with structured data. It can be easily integrated

with Java applications through JDBC interface, and provides portable and powerful computing logic for

applications. After seven years of research and development and three years of commercial use, it has been

widely used in China and recognized by some international users.

In 2019, we began to expand the international market and develop partners. If you are a developer or

distributor in the data industry and are interested in our products, you can contact us via the official website

(www.raqsoft.com). Except the powerful products, we have the best experts in the industry. They found that

there is no very handy tool in the process of data development, so they built esProc. They have rich

experience and a thorough understanding of various data computing problems. If you are an engineer and

have any problem with report calculation, welcome to seek advice from our product community

(c.raqsoft.com).

	Develop reports efficiently with esProc
	1 Abstract
	2 Application architecture
	3 Development environment
	Cell style coding
	Datasource connection
	SPL Syntax
	①Select
	②Filter
	③Distinct
	④Order by
	⑤Group and aggregation

	4 Integration in reporting tools
	Load JDBC drivers
	Load config file
	Add new datasource
	Add new dataset

	5 Application scenarioes
	Multiple data sources
	Cross-database hybrid operations
	Out-database stored procedures
	Solution of SQL Difficulties
	Grouped subsets
	Order-related aggregation
	Order-related grouping
	Position-based operations
	Dynamic column handling

	6 Ease of use
	Simple interface, easy debugging
	Syntax is simple, easy to learn and use.
	Comparison with SQL
	Comparison with Python

	7 Contact us

