
SPL parsing and exporting Excel

Contents

1 Parsing

 1.1 Ordinary style

 1.2 Multi-row header
style

 1.3 Free format

 1.4 Cross table

 1.5 Main sub-table

 1.6 Large amount of data

 2 Exporting

 2.1 Export data only

 2.1.1 Export new file

 2.1.2 Data addition

 2.1.3 Export to different
sheets

 2.2 Export large amount of
data

 2.3 Specify display
attributes

 2.4 Fill in data in fixed
rows and columns

1 Parsing

It is a common task in data analysis to parse data in Excel files into structured data (such as importing
into relational database). However, many Excel files are irregular in format, and the structuring workload
is relatively large. Besides it is difficult to be used universally, and it is necessary to analyze file formats
before the actual developing work.

Therefore, If there is a tool software that can easily complete this work, it will greatly help business work
and improve business efficiency.

 esProc is such an efficient and flexible tool, which can easily read Excel data, and then structured them
into a "sequence table" before processing.

Next, we will discuss how to use esProc to structure Excel data in different situations.

1.1 Ordinary Style

Simplest case: The first row in the Excel file is the column header, and from the second row onward, each row is a data
record.

A

1 =file(“scores.xlsx").xlsimport@t()

2 =file(“scrores.txt”).export@t(A1)

A1 Open the "scores.xlsx" file and import it into a sequence
table. The option @t indicates that the first row of the file is the
column heading.
A2 Write the sequence table in A1 as a text file, keeping the
original header.

The sequence table obtained in A1 is as follows:

1.2 Multi-row header Style
The table header is complex, including the table name, the project name, the page number, the filler, the date of filling in, and
so on.

A

1 =file(“listsAndPrices.xlsx").xlsimport(;1,5)

2
=A1.rename(#1:No,#2:ItemCode,#3:ItemNam
e,#4:Unit,#5:Quantity,#6:Price,#7:Sum)

A1 Open the file and import the data into a sequence table. The
parameter "1,5" means to read the first sheet, starting at line 5, until
the end of the file.
A2 Change the sequence table column name in A1 to “No, Itemcode,
Itemname, Unit, Quantity, Price, Sum", that is, the column name of
the data table to be imported.

The sequence table obtained in A2 is as follows:

1.3 Free Format
Sometimes the data in Excel file is not the regular table in grid format, but the free format of the field name followed by the
field value.

A B C

1
=create(ID,Name,Sex,Position,Birthday,Phone,Address,Post
Code)

2 =file(“Employe.xlsx").xlsopen()

3 [C,C,F,C,C,D,C,C] [1,2,2,3,4,5,7,8]

4
for =A3.(~/B3(#)).(eval($[A2.xlscell(]

/~/")"))
5 if len(B4(1))==0 break

6 >A1.record(B4)

7 >B3=B3.(~+9)

Each employee's information takes up 9 lines, which are arranged in order.
How to structure this kind of file? Please see:

1.3 Free Format

A1 Create an empty sequence table with column names“ID, Name, Sex, Position, Birthday, Phone, Address, PostCode”
A2 Open Excel file
A3 Define the cell column number sequence of employee information
B3 Define the cell row number sequence of employee information
A4 Use for loop to read each employee's information
B4 A3.(~/B3(#)) first calculate the current employee cell number sequence, and then read out these cell values to form the employee information
sequence. The first cycle is [C1, C2, F2, C3, C4, D5, C7, C8], the second cycle is [C10, C11, F11, C12, C13, D14, C16, C17]... Add 9 to the row
number each time. $[A2.xlscell(] is the same as “A2.xlscell(”, representing a string.
B5 Judge whether the employee ID value is empty. If it is empty, exit the loop and end the operation.
B6 Store an employee's information at the end of A1 sequence
B7 Add 9 to the row number sequence of employee information to read the next employee information

The sequence table obtained in A1 is as follows:

1.4 Cross Table
Excel also has data in crosstab format.

A

1 =file(“cross.xlsx").xlsimport@t(;1,2)

2 =A1.rename(#1:Type)

3 =A2.pivot@r(Type;Area,Amount)

A1 Open the file and import the data into a sequence table.
A2 Because the first cell in the second row is a picture, the read
data is null, and the first column has no column title, so change the
name of the first column to type.
A3 Row and column transpose the sequence table data by grouping
type. The option @ r means to convert the column data to row data.
After conversion, the new column names are "area" and "amount".

The sequence table obtained in A3 is as follows:

1.5 Main sub-table
In the employee information table shown in the figure below, in addition to the employee's own information, there is also family
member information. Each sheet keeps information about an employee, so there are as many sheets as there are employees.
The following figure shows the contents of the first sheet:

A B C

1
=create(IDCard,Name,Sex,Birthday,Nation,Phone,Depart,
Home,Marital,Entry)

2 =create(IDCard,Name,Relation,Workplace,Phone)

3 [B4,B3,D3,F3,H3,F4,H4,B5,F5,H5]

4 =file(“employee.xlsx").xlsopen()

5
for A4 =A3.(eval($[A4.xlscell(]/~/",\""/A5.

stname/"\")"))
>A1.record(B5)

6
=A4.xlsimport@t(Family,Name,Re
lation,Workplace,Phone;A5.stnam
e,6)

7
=B6.rename(Family:IDCard) >B7.run(IDCard=

B5(1))
8 >A2.insert@r(0:B7)

A1 Create an empty sequence table with column names "IDcard,
name, sex, birthday, nation, phone, Dept, home, maritime, entry" to
save the employee information in the main table
A2 Create an empty order table with column names "IDcard, name,
relation, workplace, phone" to save the information of employee
family members in the sub table
A3 Define the cell sequence of employee information in the main
table
A4 Open Excel file

1.5 Main sub-table
A5 Read each sheet of the Excel file in loop
B5 Read employee information sequence
C5 Save the employee information read by B5 to sequence table A1
B6 Read the employee family member information from row 6 onward, read only the specified "family, name, relationship, workplace, phone" 5
columns.
B7 Change the name of family column of B6 sequence table to IDcard
C7 Assign IDcard column of B7 sequence table to IDcard in employee information
B8 Save employee family member information in B7 to sequence table A2

The sequence table obtained in A1 is as follows:

The sequence table obtained in A2 is as follows:

1.6 Import large amount of data

If there are a large number of data records in Excel file and can’t fit in memory, how to import them?

A

1 =file(“orders.xlsx").xlsimport@tc()

2 =file(“orders.txt”).export@t(A1)

A1 Open the "orders.xlsx" file and import it as a cursor. The
@t option indicates that the first row of the file is the column
title, and the @C option indicates that the cursor is returned.
A2 Store the cursor data in A1 into the text file orders.txt,
keeping the title unchanged

This example is very similar to 1.1, except that the @c option is
used in A1 to read with a cursor. Only Excel files in xlsx format
can be read using cursor.

2 Exporting

Sometimes we need to use a program to automatically generate Excel files.

VBA with excel is not very easy to use, and esProc as a data processing tool

will be very convenient to achieve this requirement.

The following will introduce how to generate excel file with esProc. The powerful
data calculation ability of esProc is not the focus here. Therefore, the text is
simply used as a data source example here. In practical application, it may take
data from various data sources, and then get the data to be exported through a
series of operations.

2.1 Export data only

A

1 =file("orders.txt":"UTF-8").import@t()
2 =file("orders.xlsx").xlsexport@t(A1)

A1 Read in an enterprise order table in text format, simulating the data that may be
obtained through calculation.
A2 Export the data of A1 to the orders.xlsx file (automatically created when the file
does not exist). There is no field specified in the parameter of the function xlsexport.
All fields of A1 will be exported and the field name will remain unchanged. Because
you do not specify which sheet to export to, export to Sheet1. The function uses the
option @t to export the field name to the first row.

2.1.1 Export new file

Exported Excel file：

2.1 Export data only

A

1 =file("aday.txt":"UTF-8").import@t()
2 =file("orders.xlsx").xlsexport(A1)

If the excel file already exists, the exported data will be appended to the
original file. In this case, you do not need to use the @t option.

2.1.2 Data addition

2.1 Export data only

A

1 =file("orders.txt":"UTF-8").import@t()
2 =A1.select(Company==“Shantai")

3
=file(“orders.xlsx”).xlsexport@t(A2,ID,Com
pany,OrderDate:Date,Amount:Money;”Shan
tai")

A2 filters the sequence table A1. In A3, A2 is exported to
orders.xlsx. Only four fields, ID, company, OrderDate and
amount, are exported, and OrderDate is renamed date,
amount is renamed money, and data is exported to a new
sheet named Shantai.

2.1.3 Export to different sheets

The exported Excel file：

2.2 Export large amount of data

A

1 =file("big.txt":"UTF-8").cursor@t()
2 =file("big.xlsx").xlsexport@st(A1)

What if there is a large amount of data?
Using cursor to read data one by one will not read all data into memory.
When exporting with a cursor, you need to add the @s function option, so that when exporting, it will be exported as a stream, and the resulting excel
file will not be saved in memory.

The exported Excel file：

In this example, 123663 data records are exported. This method can export hundreds of millions of records. However, a sheet of Excel file can only
store 1048576 rows of data at most, so when the exported data reaches a million lines, a new sheet will be added in Excel to save.

2.3 Specify display attributes

Sometimes we want the generated excel file to be able to specify the
format (such as font, color, background color, alignment, etc.). At this
time, as long as the excel file template is built in advance, the format is
defined, and then the data can be exported to the file.

As shown in the following figure, write the table name in the first row of
the orders.xlsx file Sheet1, the field column name in the second row,
and define some style attributes for the table name and each column.
The middle of the first, third and fourth columns is aligned, the left of the
second column is aligned, the right of the fifth column is aligned, the
display format of the fourth column “yyyy-mm-dd”, and the display
format of the fifth column is “#,###.00”.

The exported Excel file：

The export program of esProc is the same as the previous example
2.1.1, and the export result is shown in the figure below. When
exporting to an existing file, the last non empty line of the file will be
used as the header, which will be overwritten. When exporting, various
style attributes defined in the original file will be used (not supported in
big data streaming export).

2.4 Fill in data in fixed rows and columns

esProc also provides a way to read and write a cell or a block of cells specified
in the excel file. You can fill in data to excel in a fixed format, such as the
following excel file:

Excel effect after export:

2.4 Fill in data in fixed rows and columns

It is assumed that the data to be filled in has been calculated (in the first 5 rows). The first six cells to be filled in the sample table are all independent, so
only one cell can be filled in at a time. The sixth row is cells that can be filled in consecutively. At this time, the data to be filled in is spelled into a string
separated by \t, which can be filled in to the same row in order. After filling in all the data, write the excel object opened by C6 back to the result.xlsx file.

A B C D E F

1
Mengniu funds
company

2012 3 58.2 364 300

2 8.5 50 200 100 400 200
3 182.6 76.3 43.7 28.5 16.4
4 120 1.07 30 0.27 90 0.8
5 154 6 4
6 =file(“result.xlsx") =A6.xlsopen()
7 =C6.xlscell("B2",1;A1) =C6.xlscell("J2",1;B1) =C6.xlscell("L2",1;C1)
8 =C6.xlscell("B3",1;D1) =C6.xlscell("G3",1;E1) =C6.xlscell("K3",1;F1)
9 =C6.xlscell("B6",1;[A2:F2].concat("\t")) =C6.xlscell("H6",1;[A3:E3].concat("\t"))
10 =C6.xlscell("B9",1;[A4:F4].concat("\t")) =C6.xlscell("B11",1;[A5:C5].concat("\t"))
11 =A6.xlswrite(C6)

