
esProc

Innovated data
computing engine

Issued by Raqsoft

Performance optimization - Traversal

1 Storage scheme

Contents

2 Regular traversal

3 Grouping & sorting

4 Advanced traversal

Storage format

Traversal performance differences under
different data storage schemes

Storage
Format

Characteristic Performance
ranking

Binary Minimum space and fastest resolution 1

Text Text has the advantage of being generic, but it
does not perform well.

2

Database It is also binary, but generally IO performance is
poor, traversal in the database is fast, and data
fetching is slow.

3

For the same 60 million data, with different storage
formats:

Type Time(second)

Oracle 328

Ctx (Binary) 26

txt 50

SPL Based on Database Storage

SPL Based on Binary Storage

SPL Based on Text Storage

Segmentation - Text

Segmentation is for parallel, and need to fulfil four requirements:

sales.txt

Divide into eight sections
Remove the beginning and add to
the end of each section
Number of records in each section.

1. The amount of data in each segment is basically the
same.

2. The number of segments can be specified flexibly
and dynamically.

3. Each segment is stored continuously and compactly.
4. Allow data addition

Text files can guarantee these four goals at the same time.
The files are divided equally according to the total byte size. In order to ensure the
integrity of the records, remove the beginning of half record and add to the ending half
record.

sid amount

… …

124 1024

… …

Records are segmented by total byte segment points

Remove the beginning of half record and add to the
ending half record to ensure the integrity of records

A

1 =file("sales.txt").cursor@t(;2:8).fetch()
Read the second section in eight sections and compare the contents of
the TXT file.

Code example

Segmentation - Binary

The binary file cannot identify when the record ends,
so the block segmentation scheme is needed.

…123 9283 12 4 1024 125 7364…

head:F
tail:T

head:T
tail:T

The head and tail tags indicate whether the first record in this block is a
continuation of the previous block record and whether the last record is
complete. T stands for incompleteness, F for completeness.

When reading, continue to read
the next block to complete the
last record of the current block.

When reading, skip the first entry
(maybe half a record).

Examples of corresponding
text structures

Block n Block n+1

Segmentation——Double Increment Segmentation Technique

Position No. 1 Position No. 2 Position No. 3 Position No. 4 Position No. 5 Position No. 6 Position No. 7 Position No. 8 Position No. 9 Position No.
10

1 2 3 4 5 6 7 8 9 10

The index space is full
for the first time

Position No. 1 Position No. 2 Position No. 3 Position No. 4 Position No. 5 Position No. 6 Position No. 7 Position No. 8 Position No. 9 Position No.
10

1、2 3、4 5、6 7、8 9、10 11、12 13、14 15、16 17、18 19、20

The index space is full
for the second time

Position No. 1 Position No. 2 Position No. 3 Position No. 4 Position No. 5 Position No. 6 Position No. 7 Position No. 8 Position No. 9 Position No.
10

1、2、
3、4

5、6、
7、8

9、10、
11、12

13、14、
15、16

17、18、
19、20

21、22、
23、24

25、26、
27、28、

29、30、
31、32

33、34、
35、36

37、38、
39、40

The index space is full
for the third time

Set a fixed-length index area, suppose it can store 10 record addresses.

keep the address at position number 1, write address at position number 3 to position number 2
and address at position number 5 to position number 3, and address at position number 2i-1 to
position number i

As records continue to append, after the nth double increment,
each position in the index space contains 2^(n-1) records.

Column storage

Because each column of data in the columnar storage is continuous, the traversal performance
is better than row-wise storage in the case of fewer columns taken out.

A

1 =file_btx.cursor@b(productid,quantity,area)
2 =now()
3 for A1,1000000
4 =interval@s(A2,now())
5 =file_ctx.create().cursor(productid,quantity,area)
6 =now()
7 for A5,1000000
8 =interval@s(A6,now())

For fifty million row storage
file, traversing product IDs,
quantities and areas takes 51
seconds

For fifty million column
storage file, traversing product
IDs, quantities and areas takes
22 seconds

productid

…

14028

15938

9364

2646

…

quantity

…

52

64

96

24

…

area

…

1221

1112

1467

1230

…

…

…

On the other hand, because the data is stored continuously by column, random access to hard
disk will occur when multi-column computing is needed. When more columns are involved, it may not
have advantages over row storage, and multi-threading will further aggravate this problem. Special
attention should be paid to this problem when using column storage on mechanical hard disks, which
may not always improve performance.

Column storage——Double Increment Segmentation

Order ID

Position No. 1 Position No. 2 Position No. 3 Position No. 4 Position No. 5 Position No. 6 Position No. 7 Position No. 8 Position No. 9 Position No.
10

1、2、
3、4

5、6、
7、8

9、10、
11、12

13、14、
15、16

17、18、
19、20

21、22、
23、24

25、26、
27、28、

29、30、
31、32

33、34、
35、36

37、38、
39、40

The double increment segmentation strategy is performed by records, so it’s suitable for segmenting data stored column-wise.

User ID

Position No. 1 Position No. 2 Position No. 3 Position No. 4 Position No. 5 Position No. 6 Position No. 7 Position No. 8 Position No. 9 Position No.
10

1、2、
3、4

5、6、
7、8

9、10、
11、12

13、14、
15、16

17、18、
19、20

21、22、
23、24

25、26、
27、28、

29、30、
31、32

33、34、
35、36

37、38、
39、40

Product

ID

Position No. 1 Position No. 2 Position No. 3 Position No. 4 Position No. 5 Position No. 6 Position No. 7 Position No. 8 Position No. 9 Position No.
10

1、2、
3、4

5、6、
7、8

9、10、
11、12

13、14、
15、16

17、18、
19、20

21、22、
23、24

25、26、
27、28、

29、30、
31、32

33、34、
35、36

37、38、
39、40

…

Position No. 1 Position No. 2 Position No. 3 Position No. 4 Position No. 5 Position No. 6 Position No. 7 Position No. 8 Position No. 9 Position No.
10

1、2、
3、4

5、6、
7、8

9、10、
11、12

13、14、
15、16

17、18、
19、20

21、22、
23、24

25、26、
27、28、

29、30、
31、32

33、34、
35、36

37、38、
39、40

By indexing newly-appended data in each column using the double increment segmentation mechanism,
mismatching won’t happen and the corresponding segmentation points in all columns will always form a correct record.

Ordered compression

USA M james

USA M jack

China M yao

USA F alice

China F lee

USA M james

USA M jack

USA F alice

China M yao

China F lee

Sort by area first Sort by gender first

USA（3 ），China（2 ）；M
（2 ），F（1 ），M（1 ），
F（1 ）；Total characters 12

The number of characters in the area is longer than that of the gender,
and putting the column with longer characters in the front will make
the amount of storage smaller.

Column storage is easier for merge
compression

USA（2），China（1），
USA（1 ），China（1 ）；M
（3 ），F（2 ）；Total
characters 18

Only count the number of characters, not the number of times in brackets

A B

1
=file("employee.ctx").create().cursor().sortx(level,height,
weight,city)

2
=file("employee_sort.ctx").create(level,height,weight,city,
id,name,sex,birthday,salary,company)

3
for
A1,100000

=A3.new(level,height,weight,city,id,name,
sex,birthday,salary,company).cursor()

4 =A2.append(B3)

Comparison of capacities for column storage file with
compression after sorting.

Code example for reading in and sorting

In-memory compression

JAVA is sensitive to memory usage and performance is severely affected by insufficient memory.

External storage file

00 00 00 00 00 00 00 0F 01

41 42 43 44 45 46 47 48 49

… … … … … … … … …

00 00 00 00 00 00 00 0F 01

41 42 43 44 45 46 47 48 49

… … … … … … … … …

Saved as it is in memory

Read into memory from
external storage

Data is not objectified when it is read in from external storage, but saved to memory as it is. It is objectified only
when being used. This will lose performance, but will reduce memory usage.
The combination of column storage and ordered compression can also reduce memory usage, but will increase the
complexity of record generation, so trade-offs are needed.

00 00 00 00 00 00 00 0F 01

41 42 43 44 45 46 47 48 49

… … … … … … … … …

Data saved in memory

Objectification when being used

Objectified into strings when being used

Minmax Index

min:43275
max:47628

min:12038
max:52394

min:25670
max:28365

min:28456
max:31283

When data is stored in blocks, the maximum and minimum
values of each block can be recorded.

… …

Order Date Order amount Order Number …

2017-03-05 28456 7364875 …

2017-03-05 29137 7364876 …

… … … …

2017-03-05 30294 7517645 …

… … … …

min:2017-03-04
max:2017-03-04

min:2017-03-04
max:2017-03-05

min:2017-03-05
max:2017-03-05

min:2017-03-05
max:2017-03-05

… …

Order amount

Order Date

Using the minmax information on the
data block, if there is no intersection
between the condition interval and the
minmax interval, the block data will be
skipped directly.

For example, if the filter range of
contract amount is between 29 000 and 30
000, the data blocks of green dotted line
is skipped.

skipped

skipped

1 Storage scheme

Contents

2 Regular traversal

3 Grouping & sorting

4 Advanced traversal

Compute immediately

 Find the price of orders according to the area of the orders.

A

1 =order_cursor.groups(;sum(price):amount_q)

A

1 =order_cursor.groups(area;count(~):count_p)

Find the total price of all orders

When using cursors, some calculations are performed immediately.

For example：aggregation functions like cs.groups.

Delayed calculation

Some calculations are not immediately computed after they are defined on the cursor.

For example：cs.select/cs.new/…

Find the sum of the order prices for which the order discount is less than 0.5.

A

1 =order_cursor.select(discount<0.5)

2 =A1.groups(;sum(price):amount_q)

The advantage of delayed computing is that it's as easy to understand since
the writing is just like in-memory computing, but it doesn't really generate
intermediate result sets (in-memory computing will) to take up space (or caching).

Pre-cursor filtering

Example: For orders with a discount rate greater than 0.9, find the sum of prices in their
respective areas.

A

1 =now()
2 =order_file.create().cursor(;discount>0.9)
3 =A2.groups(area;sum(price):amount)
4 =interval@s(A1,now())
5 =now()
6 =order_file.create().cursor()
7 =A6.select(discount>0.9).groups(area;sum(price):amount)
8 =interval@s(A5,now())

Pre-cursor
filtering
It takes 26
seconds

Select filtering for
cursors
It takes 56
seconds.

Can reduce the generation of Java objects; using minmax index, columns that are
not accessed are skipped directly for column storage.

Filtering conditions

Find out employees whose names contain the word "Zhang" and whose salaries are less
than 10,000.

A

1 =employee_ctx.create().cursor(;salary < 10000 && like(name,“*Zhang*")).fetch()

Pay attention to the order of writing when multiple conditions &&. If the
preceding subitem is false, the latter will not be calculated. By putting the condition
that most of the result is false in the front, the calculation times of the latter
condition item will be reduced.

Condition 1 Condition 2 && condition

false ture false

false false false

ture false false

ture ture ture The number of employees whose salary is less than 10,000 is less than the
number of employees whose name contains the word "Zhang". By writing the
condition item with a smaller result set in the front, the latter condition item will
filter by a smaller former result set. This will also reduce the number of calculations.

Multi-cursor（Memory）

After data segmentation, multiple cursors can be used to traverse in parallel.

A

1 =user.cursor@m(;4)

2 =A1.groups(city;count(~):num)

The use of multiple cursors for
grouping and aggregation is the
same as ordinary cursor.

4 parallel cursors
Partial content of
each segment of

data

Segment 3

Segment 2

Segment 4

Segment 1

Example: Count Users by City.

Multi-cursor（External Storage）

After data segmentation, multiple cursors can be used to traverse in parallel.

A

1
=user_ctx.create().cursor@m(;gender==
“M” && height>170;4)

2 =A1.groups(city;count(~):num)

The use of multiple cursors for
grouping and aggregation is the
same as ordinary cursor.

4 parallel cursors
Partial content of
each segment of

data

Segment 3

Segment 2

Segment 4

Segment 1

Example: Count male users with height greater
than 170cm by cities(user_ctx is a group table
file object).

1 Storage scheme

Contents
2 Regular traversal

3 Grouping & sorting

4 Advanced traversal

Small grouping

Example: an online mall has tens of millions of users and hundreds of millions of orders.

Partial data of orders

Count the number of orders by order category
(10,000 types).

A

1 =order_cursor.groups(type;count(~):count)

Ten thousand results
Memory can accomodate

When memory can accomodate the result set after grouping.

Large sorting

When the data to be sorted cannot be accommodated by memory.

A

1 =order_ctx.create().cursor().sortx(userid).fetch(10)

A

1 =file("tmp/tmpdata2235245067521657899").cursor@b()

① Read part of the order record and write it as a temporary file

② View temporary file

③ Each temporary file has an ordered user ID ④ Finally, the temporary files are aggregated

Example: Sorting user IDs in billions of order information

Large grouping

When the grouped result set is too large to fit in memory.

Partial data of orders

Large grouping: grouping orders by user ID (tens of millions of user ids)

A

1 =order_cursor.groupx(id;count(~):count)
2 =A1.fetch(1000)
3 >A1.close()

External storage cache file

Memory can't accommodate full
result set. The first 1000 user
IDs are fetched here.

After grouping by user id, the result set is too
large to be loaded in memory at one time. The
temporary external storage cache file is generated by
using the method similar to the large sorting, and the
grouping aggregation calculation is completed by using
the external storage.

Hash grouping

Hash=1 Hash=2

Hash=3 Hash=4

Hash=5 Hash=6

Hash=7 …

userid price …

102 20 …

202 10 …

202 5 …

102 15 …

… … …

Get hash keys by hash calculation of grouping fields

Hash keys of different userids are the same, and then
traverse to find the same userid to aggregate

A

1 =order_ctx.create().cursor()
2 =A1.groupx@u(userid;sum(price):amount)
3 =A2.fetch()

Because hash function is not monotonous for the ranking
field, the result of grouping is out of order.

Understanding aggregation

Other forms of aggregation operations of business significance - Understanding TopN
as Aggregation

TopN after grouping

TopN of complete set

A B

1 =order_ctx_cursor.groups(;top(-3;due)) //Records of the three highest payable orders

A B

1 =order_ctx_cursor.groups(area;top(-2;due):top2) //Records of the two highest payable orders per area

Ordered grouping

A

1
=order_ctx_cursor.group(month(orderdate)
:month;count(~):count).fetch()

/When the month of the order date changes, it is treated as a
new group.

Example: For order data (date ordered), count the number of orders per month in 2018.

orderid userid orderdate …

826378 283674 2018-01-01 …

… … … …

19387343 63742 2018-02-01 …

… … … …

83625134 109527 2018-03-01 …

… .. … …

January Data

February Data

March Data

Ordered grouping can be used when the grouping field itself is ordered.

Count distinct

When the data is ordered, use merging and grouping to quickly de-duplicate（count distinct）.

1

2

… n

A

1 =LogTable_cursor.groups@o(user).len()

Compare only with adjacent numbers

Example: View the number of users logged in from a system log.

A total of 129374 users
have appeared in this log.

Partially ordered grouping

A

1
=order_ctx_cursor.group@q(orderdate;productid;
sum(due):amount).fetch()

When a field is ordered, it needs to be grouped by the following field.

Example: Order files ordered by date need to be grouped by product field to count sales.

The original data is ordered by date Count sales after
grouping date and
product fields

In calculating big data, when a field is ordered and only the
following field needs to be grouped, the @q option can be used
for in-memory grouping.

Such a processing method can avoid temporary external
storage file reading and writing for large grouping, and improve
efficiency.

Partially ordered sorting

When a field is ordered, only the following field needs to be sorted.

Example: Order file ordered by date, needs to be sorted by product field.

A

1 =order_ctx_cursor.group@qs(orderdate;productid).fetch(10000)

Order date is 2018-01-04,
The result sorted by product ID

Compared with partially ordered
grouping, only sorting is done here,
no grouping and aggregation.

The original data is ordered by date

Order date is 2018-01-03,
The result sorted by product ID After partially ordered sorting

Grouping and sorting by order number

A

1
=order_ctx_cursor.groupx@n(month(orderdate):month;
count(~):count)

Serial number grouping and sorting can be used when some data fields can be seen
as ordinal numbers.

A

1 =order_ctx_cursor.groupx@ns(month(orderdate))

Grouping example： Grouping the order date by month to count the
number of orders.

Sorting example: Sorting order dates by month

After month(orderdate), it can be seen as serial
number 1~12，which can be used to group and aggregate.

After month(orderdate), it can be seen as serial
number 1~12，which can be used to sort.

Partial data of orders

Partial result after grouping

Partial result after sorting

Sorting by Index

00001~10000

10001~20000

…

00001~01000

01001~02000

…

10001~11000

…

15001~16000

…

15001

…

15300

…

15800

…

16000

pos

pos

pos

pos

pos

pos

Indexes are sometimes used for sorting field that has been built with sorted indexes.

pos

pos

 A

1 =order_file.create()

2 =A1.icursor(;consume>15300 && consume<15800,consume_idx).groups@o(consume;count(~):count)

This example uses sorted index to return ordered cursor, and uses ordered grouping for fast statistics. But if it is disordered in physics, the
performance may not be better when the quantity is large.

Example：Sort by consumption amount, and count the number of orders for certain consumption amount.

Segmental Sorting and Grouping

When sorting field can be grouped according to a rule and each group is small enough to fit in
memory.

Example：For order file, sort by user id.

Partial content of order_file

A

1 =order_file.cursor@b()

2 =A1.sortx@n(userid;userid\100000)

3 =user_file.export@b(A2)

After A2 is executed, it is grouped by userid\100000,
and N temporary files are created.

user_file data after sorting

Understanding segmental sorting:
If the userid is the same, the userid\100000 is the same, and the two are
in the same order.
Compared with sortx, option @n can be used to omit the last
aggregation.
Similarly, groupx@n can be used for large grouping.

Backstage log at A2 execution

Redundant Grouping Dimensions

Omit "redundant items" in grouping dimension.

Example: According to order data and user data, the total order amount of each user is
calculated by user id and user name.

A

1 =users.keys(userid)

2 =order_ctx.create().cursor(userid,due).switch(userid,A1)

3 =A2.groups(userid.userid;userid.name,sum(due):amount)

The corresponding SQL is：
SELECT u.userid, u.name, SUM(o.due) AS aoumnt
FROM users u
 LEFT JOIN orders o ON u.userid = o.userid
GROUP BY u.userid, u.name

From the actual situation, it is obvious that the grouping
dimension U.name in SQL is redundant, but according to the
grammatical requirements of SQL, it can not be omitted even it’s
redundant.

A1 is user data

A2 is order data,
Joins user data by userid

A3 groups by userid and
calculates the sum of orders.
The name follows userid here.

1 Storage scheme

Contents

2 Regular traversal

3 Grouping & sorting

4 Advanced traversal

A

1 =file.cursor@b()

2 =channel(A1).groups(city;sum(amount):camount)

3 =A1.groups(date;sum(amount):damount)

4 =A2.result()

Reuse of traversal result

Calculate the sum of the amount grouped by city and the sum of the amount grouped by date.

Data file

Cursor

Channel

The sum of amounts grouped by
date is defined in the cursor

The sum of amounts grouped by
cities is defined in the channel.

Cursor is pressed into
channel

The same cursor can
be pressed into several
different channels.
Multiple results can be
computed by
traversing cursor once.

Data Split

When each group of data after grouping needs to be separated independently, data splitting
can be used to complete it.

Example: Data after grouping for 1000 zones is stored
independently in each file.

A

1 =user_file.cursor@b()

2 =1000.(file("zone_"+string(~)+".btx"))

3 =A1.groupn(zone;A2)

4 =A1.skip()

Partial content of user_file

Part of the zone files exported.

A

1 =user_file.cursor@b()

2 =file("zone_gt10.btx")

3 =A1.select(zone<=10;A2)

4 =file(“zone_lt10.btx”).export@b(A3)

Example: Data with zone numbers greater than 10 and less
than or equal to 10 are split into two separate files.

Result files after conditional split

The action of exporting files
here can also be changed to
push to the channel.

Ordered Cursor

User behavior analysis: single-user operation is complex, but cross-user operation is almost nonexistent.

Example: Get the order information of customers who purchased more than 10 coffee and more than 10 milk in 2018 and
save it as latte 2018.btx.

Historical Data of an Online Supermarket
in 2018 (Ordered by userid)）

order2018.btx

A B C

1 =file(“order2018.btx").cursor@b()

2 for A1;userid
=A2.groups(category;sum(quantity):amount).select(category=="
Coffee" || category=="Milk")

3 =B2.(~.amount>10)

4
if B3.len()==2 && B3(1) &&
B3(2)

=file("latte2018.btx").export@ab(A2)

Read the same user's purchase
information in A2 each time

Current user only buys coffee, and
the number is not more than 10

B4 is false

Ordered Cursor——Changing conditions

Log analysis: starting with a special string, to find such a string is the beginning of a group.

Example: a log, with - - - flag - - - as the start of the event, and the next row is user tag. Find the user with
the largest number of rows of records in a single event.

Partial data of log file

A B

1 =file("log.txt").cursor@i() =[,]

2 for A1;~=="---flag---" =[A2(2),A2.len()-2]

3 >B1=if(B2(2)>B1(2),B2,B1)

Records of the first group of event

After the program is executed, B1 is the
maximum number of rows and the

corresponding usertag.

Iteration within the group

Iterative aggregation grammar can be computed while traversing, and the target set only
needs to be traversed once.

A

1
=order_cursor.derive(iterate(~~+~.due,0;userid,month(orderd
ate)):total)

2 =A1.fetch@x(;userid)

Example: Calculate the cumulative sales of each user as of today for each month (data is ordered by userid and date).

Partial content of order_cursor The total column in A2 is the
monthly cumulative value of the

first userid.

The parameter meaning in expression
iterate(~~+~.due,0;userid,month(orderdate):

“~~+~.due”is the cumulative value for due. Each time the userid and month
(order date) change, the accumulated variable is cleared and accumulated again.

Program Cursor

A B C D

1 func =file(“order2018.btx").cursor@b()

2 for B1;userid
=B2.groups(category;sum(quantity):amount).select(cat
egory=="Coffee" || category=="Milk")

3 =C2.(~.amount>10)

4 if C3.len()==2 && C3(1) && C3(2) return C2

5 =cursor@c(A1).groups(userid;top(-2;orderdate):top2)

A

1 =latte2018_cursor.groups(userid;top(-2;orderdate):top2)

Using program cursor can avoid reading and writing temporary external storage files and improve performance.

Method 1：Use latte2018.btx saved in “Ordered cursor” section.

Example: According to the order information of customers who purchased more than 10 coffee and more than 10
milk in 2018, find the last two purchase records of that year for that customer.

Method2： Use program cursor to avoid the landing of temporary intermediate files.

Computing content id
equivalent to “ordered
cursor “ section

Manual parallelism

Manual parallelism is more flexible than easy-to-use function options.

Example: Parallel statistics of all orders of users purchasing more than 3 milk in monthly files.

A B C D

1 =12.(file("month_"+string(#)+".txt"))

2 fork to(12) for A1(A2).cursor@t();userid =B2.groups(category;sum(quantity):amount).select(category=="Milk")

3 if C2.len()==1 && C2.amount>3
=file("milk_gt3_"+string(A2)+".txt").
export@at(B2)

A2 is divided into 12 threads. Each thread uses an ordered cursor to calculate a user whose milk purchasing
quantity is more than 3 in the same month, and export all the order information of that user in the same month
to the corresponding month's file (milk_gt3_month.txt).

month_1.txt milk_gt3_1.txt

