
Multidimensional analysis

B a s i c f o r m

B a s i c o p e r a t i o n s o f m u l t i d i m e n s i o n a l a n a l y s i s

SELECT SUM(…) FROM T WHERE D in(d,…) AND … GROUP BY L(D)

Details

SELECT * FROM T WHERE D in(d,…) AND …

L is the layer of
Dimension D, eg. Date

can be divided into
year, month, day

AVG
MAX
MIN

COUNT

Data
Cube

Dimension

Dimensional
value set

D In(d,…) is a set operation, indicating that D may be
equal to more than one d.

When there is only one d, it can be written as D = d

Aggregation

Aggregation

Slice

Cold and hot data routing

1

2

3

Full pre-aggregation

Early approach: Predict the aggregate values of various dimensional combinations, save them in advance, and refer to
them directly when accessing.

Conventional aggregation

count sum avg max min

SELECT D1,…, SUM(M), … FROM C GROUP BY D1,…

SELECT D1,…, SUM(M), … FROM C GROUP BY D2,…

……

SELECT D1,…, SUM(M), … FROM C GROUP BY Dn,…

Combination of all dimensions

D1,D2,…, Dn
D2,…, Dn
D3,…, Dn
D4,…, Dn
… …
Dn

Aggregation operations become search

operations, and lsearching can be done

quickly using indexes

A CUBE has n independent dimensions, and there are 2n combinations of dimensions.

Suppose an intermediate cube occupy 1K space (in fact, a cube can not occupy only 1K), when n = 50:

 Needed space=1K×250=1048576 T

Assume that no more than 20 dimensions (aggregation + slicing) are used at a time:

 Needed space =1K×(C(50,1)+C(50,2)+…+C(50,20)) ，still an enormous figure

conclusion：

 When n <= 10 and the middle cube is not too large, the full amount of pre-aggregation can be done.

Space estimation

There is too much space for all dimensions to be combined.

Functional Blind Zones of Pre-aggregation

The following cases are often used, where pre-aggregation is helpless.

Unconventional aggregation such as unique count, median

and variance is often used, difficult to predict, and can not

be calculated from other aggregation values.

There are too many combinations to predict, such as:

TOP3 of average monthly sales = top(3,monthly sum(sales amount) / count())

MAX of median monthly sales = max(monthly sort(sales amount)(count() + 1/2)))

Count the total amount of orders with value greater than 1000

Count the total amount of orders with sales quantity greater than 50

Count the total sales during the period 2018-6-10 to 2018-6-20

There are too many combinations of (d,…) to be totally pre-aggregated

 Unconventional
aggregation

 Aggregation of
combinations

 Conditional
query

 Time period
statistics

 D in(d,…)
conditions

Partial pre-aggregation

Pre-aggregate conventional aggregation for partial dimensions

ORDER_ID DATE DPT SALE …

……

 A B

1 =user_file.create()

2 =A1.cuboid(cu_1,DATE,DPT;sum(SALE)) /Create cube

 A

1 =user_file.create()

2 =A1.cgroups(DATE,DPT;sum(SALE))

 A

1 =user_file.create()

2 =A1.cgroups(DATE;sum(SALE))

For example，Pre-aggregate according to date and department, and count the

total sales.

When querying, if the sales are aggregated according to the date and department,

then the results can be returned directly.

If the sales are aggregated by date, they can be aggregated again on the pre-

aggregated results.

When the condition is set in, for example, aggregate the total sales of department 1,

3, 5, i.e. department in (1, 3, 5), can also be achieved by re-aggregation.

Calculate aggregation for some commonly used dimensions and combinations

and save them in advance, and the results can be returned directly when querying,

or aggregate based on these saved intermediate results.

 A

1 =user_file.create()

2 =A1.cgroups([1,3,5].contain(DPT);sum(SALE))

Partial pre-aggregation

 Aggregate intermediate cube again

CUBE1[A,B,C]

CUBE2[A,C,D]

Intermediate CUBE

The re-aggregated results can also be preserved as

an intermediate cube for future use.

When re-aggregating, if there are more than one

intermediate result set available, choose the one

with the smallest amount of data.

For example, to aggregate dimensions [B, C], two

pre-aggregated cubes can be used: the aggregated

dimensions of CUBE1 are [A, B, C], and the

aggregated dimensions of CUBE3 are [B, C, D].

Both can aggregate [B, C]. CUBE3 should be

chosen at this time.

CUBE3[B,C,D]

CUBE4[A,B,E]

CUBE5[B,D]

CUBE6[B,C]

Aggregate
again

Principle 1: Choose a smaller amount of data

Principle 2: Keep Intermediate cube
Query result

Aggregation-Time period pre-aggregation

Aggregation of Time Dimension

DATE SALE …

……

2018-06-19 1700

2018-06-21 1600

2018-06-29 1600

2018-06-30 600

……

2018-11-01 2300

2018-11-08 2300

2018-11-11 1600

……

 A B

1 =user_file.create()

2 =A1.cuboid(month(DATE);sum(SALE)) /Create cube

MONTH SALE …

1 35000

2 31700

3 21600

4 16000

5 26060

6 38000

7 62300

8 72300

9 41600

10 56000

11 60080

12 0900

 A B

1 =user_file.create()

2
=A1.cgroups(;sum(sales);
Date>=date(“2018-6-19”) &&
Date<=date("2018-11-11"))

/Query total sales
from June 19 to
November 11

Total sales from June 19 to November 11=

[6-19,6-30]、[11-1,11-11]、[July, October]

The sum of the total sales of the above three periods. Among them,

[July, October] data have been aggregated monthly, and the amount

of calculation can be neglected.

[6-19,6-30] and [11-1,11-11] have 23-day data to be aggregated,

compared with the original 145-day data, the amount of calculation

is only 15%.

Aggregation-Time period pre-aggregation

Principle of Time Period Aggregation Using Intermediate CUBE

 The aggregate dimension of the intermediate CUBE is [year, month and day], which can be aggregated into [year, month] or [year].

 Query conditions are time periods, which may not be aggregated again.

 For example:[2018-9-15,2018-10-18] There is no whole year or month in this period of time.

 The intermediate CUBEs that can be used may have multiple levels

 For example, in the period of [2016-11, 2018-2-14], we can use the data of the whole year of 2017, as well as the data of December 2016 and

 January 2018, which are from two CUBEs.

 To ensure data synchronization, that is, when the original table data is updated, the aggregation results of the intermediate CUBE

should also be updated synchronously.

Aggregation

Slice

Cold and hot data routing

1

2

3

Slice-Redundant Sorting

Redundant sorting of data to ensure the continuity of data storage as far as possible.

Save the data in two copies, one sorts according to dimension D1,…,Dn, another sorts according to dimension

Dn,…,D1. In this way, we can always find a slice dimension in the first half of the two dimension-ranking columns,

and the data after slicing is basically continuous. The performance improvement is still obvious.

D1 D2 D3 … Dn Dn Dn-1 … D2 D1

Continuous Partially
continuous

Continuous Partially
continuous

Slice-Redundant Sorting-Index

1

3

2

4

…

pos

pos

pos

pos

pos

Accessing Redundant Ordered Data by Index

 A B

1 =user_file.create() /Open the file

2 =A1.icursor(;d2>0,id_2) /Traverse d2 records

3 =A1.icursor(;d8>0,id_9) /Traverse d8 records

 A B

1 =user_file.create() /Open the file

2 =A1.index(id_2,d2)
/Create sorting index
for d2

3 =A1.index(id_8,d8)
/Create sorting index
for d8

Create index Search for result

d1 d2 d3 … d10

1

2

3

4

…

d10 d9 d8 … d1

400

200

300

100

…

100

200

300

400

…

pos

pos

pos

pos

pos

Slice-Redundant Sorting

Choose the position of dimension in slice according to business data

D1 D2 D3 … Dn

1 10 100

1 10 108

1 20 106

2 15 100

2 15 102

2 16 90

2 16 101

Partial continuity refers to the composition of several continuous parts. For

example, D1 is completely continuous, D2 consists of two consecutive parts

and D3 has four consecutive parts.

It is not difficult to find that the continuity of dimension depends on the

number of previous dimension values. If the number of Dn value is m, then

Dn+1 may be divided into m continuous parts.

Therefore, we should try to choose the dimension with fewer values to put in

front.
Continuous

Partially
continuous

Slice-Dimension value filtering-Sequencing

Numbering the dimension values and then filtering bit by bit.

UID AREA

10001 Shanghai

80022 Chongqing

20021 Zhejiang

00078 Guangdong

50001 Jiangsu

…… ……

Conversion of
area to natural
number

AREA

12

19

14

22

13

……

1 2 3 4 5 6 7 … 12 13 14 15 16 …

T F F F F F F … T T T F F …

The area set is converted to
a truth table X, and the
area in the set corresponds
to true, while the area not
in the set corresponds to
false.

SELECT * FROM table1 WHERE AREA IN (Beijing, Hebei, Shandong, Guangdong, Fujian, Sichuan, Jiangsu,
Zhejiang, Shanghai);

Before conversion, to determine whether Shanghai is in the set, an average of 9/2

= 4.5 comparisons are needed.

After conversion, according to Shanghai's serial number 12, you can look up the

table once and get X(12)=true.

Slice-Dimension value representation

Pre-generation of small integer objects

Dimension values are mostly small integers, which can be generated in advance. For

Java applications, there are the following advantages:

 Reducing object creation and improving reading speed

 Sharing of small integer objects saves memory

0 1 2 3 4 5 6 … 65533 65534

D1

1

2

3

…

65534

D2

hd123

abc12

waywa
y …

hijk

K1

65533

65533

65533

99999

…

K2

…

K3

65537

65535

4

0

…

65535 4 0

Not in the
range of small

integer

Pre-generated 0-65535
integer objects

Not in the
range of

small
integer

Slice-Label Filtering

Use bit operation when there are many
binary dimensions.

A B C D E F G H I

1 1 0 1 0 1 0 1 0

2 0 1 0 1 0 1 0 1

3 1 0 1 0 1 0 1 0

4 0 1 0 1 0 1 0 1

…

A B2I

1 AAh

2 55h

3 AAh

4 55h

…

Merging
dimensions

 A B

1 =file1.cursor() /Open the file

2
=A1.select(B==1&&C==0&&D==1&&E==0
&&F==1&&G==0&&H==1&&I==0)

/Conditional
filtering

3 =A1.select(B==1&&D==1&&I==0)
/Conditional
filtering

 A B

1 =file1.cursor() /Open the file

2 =A1.select(B2I==0xAA)
/Filter according
to bit condition

3 =A1.select(and(B2I,0xC1)==0xC0)
/Filter according
to bit condition

Slice-Set intersection

Regarding the set as a label

SELECT * FROM T WHERE K in(SELECT K FROM S1 INTERSECT SELECT K FROM S2)

SELECT * FROM T WHERE S1 in S AND S2 in S

SELECT * FROM T WHERE S1 in (k1,k2,…) AND S2 in (k1,k2,…)

SELECT * FROM T WHERE (S1=true & S2=true)

SELECT * FROM T WHERE (S1&S2)=1

S1 and S2 are subsets, and the
computation is very slow

S is the set that current record
belongs to

Represent S with (k1,k2,…)

S1 and S2 are considered as bool
fields

Converting S1 and S2 into two-
dimensional value fields

Slice-Change Label storage

Label data that does not change much over time only saves the changed part and reduces memory

Jan 2016

USER_ID

lw2008

super22

qq59876

zzz123

wxx1994

……

Feb 2016

USER_ID

lw2008

super22

zzz123

wxx1994

fly123

……

Mar 2016

USER_ID

lw2008

super22

zzz123

wxx1994

hd96

…… It is not necessary to load the monthly historical data, but only the first
one. The latter is calculated on the basis of change.

February data = January data XOR change 1

March data = January data XOR change 1 XOR change 2

The nth month data = January data XOR change 1 XOR... XOR change (n-1)

Change1

qq59876

fly123

Change2

fly123

hd96

 A B

1 =data_201601.import().(USER_ID) /Load January 2016 data

2 =data_change.cursor().fetch(5) /Five-month change data

3 =[A1].insert(0,A2)

4 =A3.xunion() /Calculate June data

Change n

…

Slice – Join filtering

For methods to improve Join performance, please refer to Join related documents

Completely in-memory pre-
association

Reuse index in filtering dimension
table

Sequence-number-based dimension
table reference

Parallel

Aggregation

Slice

Cold and hot data routing

1

2

3

Cold and hot data routing

Data Routing

According to the data temperature,

a hierarchical strategy is adopted:

hot data with frequent and high

concurrent access is pre-positioned,

cold data with massive low

frequency access is post-

positioned, and controlled by data

routing.

Hot data: Memory

Warm data: local files

Large amounts of recent data

Large amount of coarse-
grained data

Cold data: Database, Data warehouse

Historical data

Recent data

Coarse-grained
aggregated data

According to the time
dimension of data and
aggregated granularity,
we can decide whether
to use cold data or hot
data.

Fine-grained
aggregated data

Cold and hot data routing

According to the time dimension of the data, short-term data is hot and long-term data is cold.

For data with time dimensions, recent data can be loaded into memory.

 A B

1 =env(hot_data, file(“data_2019.ctx”).create().cursor().fetch())
/Hot data in 2019 is totally loaded
into memory

When querying, if the data belongs to 2019, access hot data.

 A B

1 =file(“data_history.ctx”).create() /Cold data before 2019

2 if(year(key_date)==2019) =hot_data.select(DATE==key_date)
/Hot data, in-memory
query

3 else =A1.cursor(; DATE==key_date).fetch() /cold data, access file

Key_date is the date parameter
entered.

For pre-aggregated data granularity, coarse-grained data is hot, and fine-grained data is cold.

For the pre-aggregation of time dimension, coarse-grained pre-aggregation can be loaded into memory.

 A B

1 =env(data_year,file(“data_year.ctx”).create().cursor().fetch()) /Data pre-aggregated by year is loaded
into memory

When querying, the hot data is accessed in case of yearly aggregation.

 A B

1 =file(“data_day.ctx”).create()
/Cold data aggregated by
date

2 if(ifdate(key_date)) =A1.cursor(; DATE==key_date).fetch() /cold data, access file

3 else =hot_data.select(DATE==key_date)
/Hot data, in-memory
query

Hot data is used if key_date is not date data.

Cold and hot data routing

Issued by Raqsoft

