
Fetch data in parallel
Improving Data Reading Performance

How slow is the JDBC of the database?

【Testing Example】
From 30 million rows and 8 columns of customer table (text size 4.9 GB), fetch data for testing from
Oracle and MySQL respectively.

First Time Second Time Rows per second

Oracle 293 281 106000

MySQL 518 381 79000

Testing result:（Unit：second）

Hardware environment ：Two Intel2670 CPU，2.6GHz，16 core in total，Memory 64G，SSD hard disk

It takes 5 minutes to read a 30 million row ！！！ OMG

How to speed up?

Accelerate reading efficiency by parallel fetching and utilize multi-CPU capability.

However, JAVA is too difficult to implement parallel programs (have to consider

troublesome transactions such as resource sharing conflicts)

Is there a simple way?

DB

Parallel for single table

1. How to segment？

 a. Segmentation with index

 b. Segmentation without index

2. External storage Case

Setting parallel number

1. Not more than CPU core number

2. Far more than CPU core number

Parallel for multi-table

Fetch data in parallel and Join calculation

Using Index Field to Segment

Segment equally: Data segmentation is needed before single table can be retrieved in parallel to ensure that the data of each segment is
relatively equal.

 Using index can speed up the positioning of segment data and fast implement parallel data fectching.

Example

Parallel reading of order table data for a specified period.
(Index field: orderID)

Code（1）- Accurate calculation of data range

 A B C

1 =connect("db")

2

=A1.query("select
min(orderID)
minID,max(orderID) maxID
from order where
orderDate>=? and
orderDate<=?",begin,end)

=b=A2.minID =e=A2.maxID

3 =p=4 /Parallel number =range(b,e+1,p)

4 =C3.to(,p) /Initial value of segment parameter

5 =C3.to(2,) /End value of segment parameter

6 fork A4,A5 =connect("db")

7
=B7.query@x("select * from order where
orderID>=? and orderID<? and orderDate>=? and
orderDate<=?",A6(1),A6(2),begin,end)

8 =A6.conj() /Merge query result

Code（2）- Effective use of index

 A B C

1 =connect("db")

2

=A1.query("select
min(orderID)
minID,max(orderID)
maxID from order)

=b=A2.minID =e=A2.maxID

3 =p=4 /Parallel number =range(b,e+1,p)

4 =C3.to(,p) /Initial value of segment parameter

5 =C3.to(2,) /End value of segment parameter

6 fork A4,A5 =connect("db")

7
=B7.query@x("select * from order where
orderID>=? and orderID<? and orderID>=? and
orderID<?",A6(1),A6(2),begin,end)

8 =A6.conj() /Merge query result

About fork

In esProc, multiple threads can be started by fork statement to implement parallel computing, and esProc also provides a

variety of merge functions to facilitate the merging of parallel results.

Computing Task

fork

Thread
1

Thread
2

Thread
3

Thread
4

Merge results

Note

It should be noted that the database connection must be established in parallel threads so that it can be

used separately for multiple threads. If a common connection is used, the acceleration can’t be achieved

because the database will automatically change multiple requests on the same connection to serial

execution. Therefore, parallel fetches can be used to improve performance only when the database is not

overburdened and there are enough connections available.

ATTENTION

Performance comparison

129

58

0

50

100

150

串行 4线程并行

运行时间（秒）

Testing environment
（PC）：

Testing example： Read order data for a specified period based on the order table.

CPU：i5-6200U@2.30GHz
RAM：8GB
OS：win10-64bit
DB：oracle12c
Order table record number：5 million
Read data range：3 years data（8 years data in

total）

Testing result：

Non-indexed field segmentation

If the database burden is not heavy, it can also be segmented based on non-indexed field (such as date). Compared with

JDBC data fetching time, the time to traverse the database table multiple times is not very large.

Benefits: There is no need to query database first to determine the start and end of each segment.

Example
Parallel reading of order table data for a specified period.

Code

 A B C

1 =connect("db")

2 =range(begin,end+1,4)

3 =p=4 /Parallel number

4 =A2.to(,p) /Initial value of segment parameter

5 =A2.to(2,) /End value of segment parameter

6 fork A4,A5 =connect("db")

7
=B6.query@x("select * from order where
orderID>=? and orderID<?",A6(1),A6(2))

8 =A6.conj() /Merge query result

External storage case

Sometimes a statement (a table) has a large amount of data. Parallel sub-task can not fit into memory after

segmentation. We can query by cursor and then merge in this case.

Example

Parallel reading of order table data for a specified period.

（ Data is so large that it can’t fit into memory after segmentation. ）

Code

 A B C

1 =connect("db")

2

=A1.query("select min(orderID)

minID,max(orderID) maxID from

order where orderID>=? and

orderID<=?",begin,end)

=b=A2.minID =e=A2.maxID

3 =p=4 /Parallel number =range(b,e+1,p)

4 =C3.to(,p) /Initial value of segment parameter

5 =C3.to(2,) /End value of segment parameter

6
=A4.(connect(“db”).cursor@x(“select * from order where orderID>=? and orderID<? and

orderID>=? and orderID<=?”,~,A5(#),begin,end))

7 =A6.mcursor() /Merge query result

8 =file(“\usr\order.txt").export@t(A7) /Write file based on cursor

Note

Parallel query based on external storage cursor is very similar to the in-memory mode. When the memory resource is

tight, it can reduce the memory consumption by external storage computing.

Pay attention to the requirement of result orderliness

When cursor merges, because the running speed of each thread can not guarantee regularity, the data export sequence

based on multi-thread is uncontrollable, and this method can not be used when the data sequence is required.

Setting Parallel Number

Normally, the parallel number of a parallel program is recommended not to exceed the number of CPU cores （ ≤CPU core

number）

Because more tasks do not increase parallelism, and can avoid additional time overhead caused by thread switching in CPU.

Case 1：

Parallel number≤CPU core number

Setting Parallel Number

Setting Parallel Number

Setting the number of tasks far larger than the CPU core number (multiple CPU core number), so that multi-CPU load

can be dynamically balanced, and for some calculations the segmentation can also be simplified.

Case 2：

Parallel number far larger than CPU core number

Example

Parallel reading of order table data in one year.

 A B C

1 fork to(1,12) =connect("demo")

2
=B1.query@x("select * from order where month(orderDate)=?
and orderID>=? and orderID<=?",A1,begin,end)

3 =A1.conj() /Merge query result

The number of threads can be set to 12 (months) when querying only one year's data, thus simplifying segmentation.

Note

esProc provides a dynamic balancing mechanism for multi-threaded tasks. When the number of tasks is larger than the

number of parallel setting, esProc automatically assigns the next task to the thread that finished current calculation. It

can ensure that one thread runs several small tasks, while the other thread runs only a smaller number of large tasks to

achieve overall balance, so that the amount of data does not have to be distributed equally.

Flexibility

Parallel for multi-table

In some multiple SQL query scenarios, such as multiple datasets of reports, data can still be retrieved by executing
multiple statements simultaneously in parallel.

Example
Read 5 tables data in parallel and complete join.

order

orderID

orderDate

customerID

eID

…

customer

customerID

customerName

area

…

employee

eID

eName

…

orderDetail

orderID

productID

price

quantity

…

product

productID

productName

type

…

Code

 A B C

1 =connect("db")

2 ="select * from order where orderID>=date('"/begin/"') and orderID<=date('"/end/"')"

3 select orderID,productID,price, quantity from orderDetail

4 select customerID,cunstomerName from customer

5 select eID,eName from employee

6 select productID,productName from product

7 fork [A2:A6] =connect("db")

8 =B7.query@x(A7)

9 =od=A7(1) =detail=A7(2)

10 =cus=A7(3) =emp=A7(4) =prod=A7(5)

11 >od.switch(customerID,cus:customerID;eID,emp:eID)

12 =detail.switch(orderID,order:orderID;productID,prod:productID)

13
=A12.new(orderID.customerID.customerName:cusName,orderID.orderID:orderID,orderID.eID.eNam
e:empName,productID.productName:prod,price, quantity)

Higher performance based on files

If the data is moved out of the database and put into the file system, the performance will be better.
esProc provides an efficient data storage format - set files and group tables.

Database
single
thread

Database
multiple
threads

Text multiple
threads

esProc group table

Data fetching performance comparison

Summary

The significance of esProc multi-threading parallelism lies in its simplicity and low cost. Compared with

JAVA complex multi-threaded programming, esProc can be as simple as several lines of codes. Compared

with the database cluster scheme, the cost esProc is more controllable. Moreover, even if the database

cluster is deployed, esProc can still be used to accelerate the data fetching of individual database node in

the cluster.

Simple and low cost

