Query of Large Quantity of Random Key Values in Big Data

Search of single record:

Create index according to key value for data table, and the search complexity is only logN times. For 1 billion rows of data, the comparison is only 30 times, which takes only a few milliseconds on modern computers.

Search of massive key values:

For as many as thousands or even tens of thousands of key values, if we simply use the database index, the time delay will rise to tens of minutes or even hours.

Row storage and column storage

For scenarios where the entire record needs to be taken out, row storage is more appropriate than column storage.

A3	1		1	-
Index	i	t	data	
1		1	vf5mous8qnwc3pp24y6tz79ax0ihd1jrlkge	
2		2	cvsofpehx65wg2m3bk02dty4j9r7inl1g8ua	
3		3	iexocb0kdwts9fqj1p8h5nmurz43gav72ly6	
4		4	wcx96mpiur4sf1vaqe8zodhb5n02ykjtg7l3	
5		5	ewma6zr/go4chr52uyjp1bfsq3t8lv9i7xdk0	
6		6	do56mgbin8xa1c30hgy7qtusrz2w4fjlvekp	
7		7	ieqna69bcthoxgd108k3flpw2rjmvzy4u57s	
8		В	ocvh2ek0ptfzqx14n57aid68lmyujgr3b9sw	r
9		9	cgsiub74nje185qv3hrao2kwmylz60px9dft	t
10	1	D	xnliom6zbesrg7k8yf39512duqjpt4cvwh0a	

A3			4	-
Index	id	data		
- 1	-1	vf5mous8qnwc3bp24y6tz79ax0jhd	1jdkg	e
	-2	cvsofpehx65wqzm3bk02dty4j9r7ip	1 <u>198u</u>	а
3	-3	Texocb0kdwts9fqj1p8h5nmurz43g	w <mark>7.24</mark> y	6
	-4	wcx96mpiur4sf1vaqe8zodhb5n02y	kjtg7	3
5-	-5	ewma6zngo4chr52uyjp1bfsq3t8lv9	ji7xdk	. 0
6	-8-	do56m9bin8xa1c30hgy7qtusrz2w/	lfjivek	p
7	-7	Tegna69bcthoxgd108k3flpw2rjmvz	<u>4u57</u>	s
8	-8-	ocvh2ek0ptfzgx14n57aid68lmyujgr	<u>369s</u>	w
	<u>-9-</u>	cosiub74nie185gv3hrao2kwmvlz6	0px90	ff
	40-	antiom6zbesra7k8vf39512dugipt4	wb0	a
		with a second the second s		

Row storage

Summary of contents

- 1) Single field key
- 2) Multi-field key
- 3) Multithread Query
- 4) Index redundancy mechanism
- 5) Data Addition Processing

Single field key - data generation

Let's take the following data structure as an example

Field name	Туре	Is the primary key?	Explanation
id	int	Yes	Begin with 100000000001 to increase
data	string		Data to be acquired

According to the above data structure, 600 million pieces of data can be created in the text file, which can be written as follows:

	А	В					
1	1234567890qwertyuiopasdfghjklzxcvbnm						
2	=file("single600m.txt")						
3	for 6000	=to((A3-1)*100000+1,A3*100000).new(~+10000000000000000:id,rands(A1,rand(40)+160):data)					
4		=A2.export@at(B3)					

Search of massive random key values

From 600 million records, find records corresponding to 10,000 randomly distributed key set

Single Field Key-Index Principle

Example of dichotomy : Find User Information with ID 82

	id	score
	12	2374
	16	4180
	17	8515
	19	1887
Find 25 for the first time	25	7900
	34	8398
Find 78 for the second time	62	2277
	78	1662
Find 82 for the third time	82	5955
	99	4495

In this case, sequential lookup (traversal) requires nine comparisons, while dichotomy only uses three comparisons. The time complexity of sequential lookup is O (n).

The time complexity of dichotomy lookup is O (log_2).

Ordered users table

Single field key - hierarchical index

Large index can not fit in memory, and there is no need to fit in memory, hierarchical index can be used.

Three-level hierarchical index schematic diagram

Single field key - Key value type

For non-integer key values, they should first be converted to integers.

License number	Data column
<mark>京A</mark> 12345	
沪 <mark>B</mark> 56789	
Conv	vert to numbers
License number	
	Data column
100112345	Data column
100112345 110256789	Data column

ID number										Data column
110105197608028736										
310104199809209731										
Multi-layer seri								al num	ıber	
								,		
			I) nun	nber			,		Data column
11	01	05	ונ 19	0 num 76	nber 08	02	87	36		Data column
<mark>11</mark> 31	01 01	05 04	19 19	2 nun 76 98	1ber 08 09	02 20	87 97	36 31		Data column

Single field key - key value sorting

Key value set to be searched is orderly, so we can avoid turning back when searching.

Example: According to the ordered set of key value, search (749, ..., 10000879, ..., 10249527, 10249981, ...)

						pos	
		0000001~00001000			00000749	pos	
		00001001~00002000				pos	
0000001~1000000							1
1000001~2000000						pos	
	Because the set of key value to be searched is orderly, the search for 10000879 does not			10000879	pos		
		the index blocks that do not satisfy the condition and that have been searched	скір e d.			pos	
		1000001~10001000		$P \mid$		pos	Because the set of key value to be
					10249527	pos	ordered, These two key values
		10249001~10250000				pos	10249527 and 10249981 fall into the same
					10249981	pos	index block, and there is no ne <u>ed</u>
						pos	to go back and compare.

Single field key - index cache

Preload Index Cache to Improve Query Efficiency

Each time an index is used for key value queries, the operating system generates a cache.

After N times of using index queries, the efficiency will reach the limit.

Index caches can be **pre-loaded** so that each query is in the most efficient state.

Single field key – Create group table and index

Generate a group table file that is **stored row-wise** using the text file that has been created.

	A
1	=file("single600m.txt").cursor@t()
2	=file("single600m.ctx").create@r(#id,data).append(A1)

Note: Key value id should be ordered in the table, because disk jitter can be relatively reduced when the set of key value is concentrated.

Create a sort index of ID keys for the group table file.

 1
 =file("single600m.ctx").create().index(id_idx;id)

Single field key - group table query

Random generation of 10,000 ids, use index to query.

	A	В
1	=file("single600m.ctx").create()	/Open the group table
2	=A1.index@3(id_idx)	/Load three level index cache
3	=10000.(10000000000+(rand(60000000)+1)).sort()	/Randomly choose 10,000 ordered key values
4	=now()	/Current time
5	=A1.icursor(;A3.contain(id),id_idx).fetch()	/Batch key value search using index
6	=interval@ms(A4,now())	/Time used for searching

There are two points to note when querying:

1. Key value sorting: The set of key value to be searched is ordered.

2. Index cache: Preload index cache before the search.

Single field key - Oracle imports data and creates index

Import the created text file data into Oracle.

Oracle create table: create table single600m (id number(13), data varchar2(200));

Import text file content into table using Oracle's SqlLoader (omitted)

Oracle create index: create unique index idx_id_600m on single600m(id);

Single field key – Oracle query

Random generation of 10,000 ids, use index to query.

	A	В
1	=10000.(10000000000+rand(60000000)+1).sort()	/Randomly choose 10,000 ordered key values
2	=A1.group((#-1)\1000)	/Each 1000 key values are a group
3	=connect("oracle")	/Establish database connection
4	=now()	/Current time
5	=A2.(A3.query("select * from single600m where id in (?)",~)).conj()	/Merge multiple query results
6	=interval@ms(A4,now())	/Time used for searching
7	>A3.close()	/Close database connection

Grouping into several groups of 1000 entries because the maximum number of in in the database supports 1000 entries.

Let's take the following data structure as an example

Field name	Туре	Is the primary key?	Explanation
type	string		enumerable
id	int		The ID of each enumeration type increases from 1
data	string		Data to be acquired

Type and ID fields are used as joint primary keys to determine a record.

Multi field key -- Merge primary keys

It involves the storage and comparison of sets, and is slower than single field key.

In order to achieve high performance, a more common method is to combine multi-field key into single-field key.

For the NID after merging primary keys, it can be processed according to the method of single field key. Pay attention that the NID needs to be ordered.

Multi-threaded Parallel Approach to Further Improve Performance

Example: data file, 4 threads, ordered keys are divided into 4 segments in sequence

Ordered set of key values to be searched (divided into four parts equally)				
Thread 1	Thread 2	Thread 3	Thread 4	
First equally divided part of keys	Second equally divided part of keys	Third equally divided part of keys	Fourth equally divided part of keys	
	Big o	data file		

Multithread Query – Group table

Multi-threaded Parallel Approach to Further Improve Performance

	А	В
1	=file("single600m.ctx").create()	
2	=A1.index@3(id_idx)	
3	=10000.(100000000000+(rand(60000000)-	+1)).sort()
4	=A3.group((#-1)\1000)	
5	=now()	
6	fork A4	=A1.icursor(;A6.contain(id),id_idx)
7		=B6.fetch()
8	=A6.conj()	
9	=interval@ms(A5,now())	

Attention should be paid to:

- 1. After sorting the random key set in A3, A4 is divided by the row number of A3, so as to ensure the key set of each thread is concentrated.
- 2. The action of data fetching must be completed in each thread, so that the real parallel can be achieved.

Multithread Query - Oracle

Multi-threaded Parallel Approach to Further Improve Performance

	А	В	
1	=10000.(100000000000+rand(60000000)+1).sort()		
2	=A1.group((#-1)\1000)		
3	=now()		
4	fork A2	=connect("oracle")	
5		=B4.query("select * from single600m where id in (?)",A4)	
6		>B4.close()	
7	=A4.conj()		
8	=interval@ms(A3,now())		

Grouping into several groups of 1000 entries because the maximum number of in in the database supports 1000 entries.

Index redundancy mechanism

Column storage is often used when data needs to be traversed, but it is not suitable for searching. Index redundancy mechanism can be used to improve the random search performance of column-stored data.

Create column-stored group table

A
1 =file("single600m.txt").cursor@t()
2 =file("single600m.ctx").create@r(#id,data).append(A1)

Create valued index

1 =file("single600m.ctx").create().index(id_idx;id;data)

Α

Use valued index file to search eliminates the need to read the original column-stored file. Although the efficiency is better than the row-stored non-redundant sort index, it needs to pay the cost that the disk space occupied is larger than the original column-stored file.

Comparison of testing results (1)

Extracting 100,000 batch random keys from 600 million pieces of data

Testing environment

Processor	Intel(R) Xeon(R) CPU E5-2670 @	2.60GHz two core
Memory	64G	
Hard disk	SAS 1TB	
Operating system	centos6.8(64 bit)	

Testing result

Time consumed (ms)					
Single thread				Multi-thread (10 threads)	
Oracle	Row-stored group table	Index redundancy	Oracle	Row-stored group table	Index redundancy
117322 20745 19873			39549	10975	9561

Comparison of testing results (2)

Extracting 100,000 batch random keys from 600 million pieces of data Extracting 100,000 batch random keys from 1.2 billion pieces of data

Testing environment

Processor	Intel(R) Xeon(R) CPU E5-2670 @	2.60GHz two cores
Memory	64G	
Hard disk	SSD 1TB	
Operating system	centos6.8(64 bit)	

Testing result

Time consumed (ms)			
Single thread		Multi-thread	(10 threads)
Oracle	Row-stored group table	Oracle	Row-stored group table
56671	23990	35184	13264
Oracle	Row-stored group table	Oracle	Row-stored group table
151089	24421	95987	14623

Characteristic summary: The index performance of esProc is basically related only to the amount of data extracted, has little relation with the total amount of data, but the index performance of traditional database is very much related with the total amount of data.

Data update

Update of modified file data

date	price	
2019-04-23	50	
2019-04-24	50	
2019-04-25	50	
2019-04-26	50	
2019-04-27	50	

date	price
2019-04-24	51
2019-04-26	49

date	price	
2019-04-23	50	
2019-04-24	51	
2019-04-25	50	
2019-04-26	49	
_ 2019-04-27	_50_	

When recent cumulative incremental data change

	А	В
1	<pre>=add_file.create().update(update_data)</pre>	/Update file data
2	=add_file.reset@q()	/Rapid Reorganization of Supplementary Area Data

Rapid reorganization means thatonly the part after the firstcomplement data appears isreorganized. Previous data need notbe rewritten.

Data addition

When keys are ordered, add new data directly.

When the keys are not ordered, new and old files need to get in order first, and then merge and sort.

	А	В
1	=file("single600m.ctx")	
2	=A1.create().cursor()	/Create group table cursor
3	=file("singleadd.txt")	
4	=A3.cursor@t()	/Added txt cursor
5	=file("single.ctx_temp").create(#id,data)	/Create new group table
6	=A5.append([A2,A4].mergex(id))	/After merging and sorting, the results are saved into the new group table

Note: The group table and TXT in A1 and A3 need to be ordered by ID.

Addition of Daily Data Files

File group query

	А	В
1	=file(["his_file","add_file"])	/File group
2	=A1.create().icursor(;id=="3197608180")	/Query

To be continued in the next chapter

• Search of Large Quantity of Random Key Values in Cluster

Coming soon