
Query of Large Quantity of Random Key Values in Big Data

Search of massive key values

Search of single record：

Create index according to key value for data table, and the search complexity is only logN times.
For 1 billion rows of data, the comparison is only 30 times, which takes only a few milliseconds on modern
computers.

Search of massive key values：

For as many as thousands or even tens of thousands of key values, if we simply use the database
index, the time delay will rise to tens of minutes or even hours.

Row storage and column storage

Column storage Row storage

For scenarios where the entire record needs to be taken out, row storage is more appropriate than
column storage.

Summary of contents

1) Single field key

2) Multi-field key

3) Multithread Query

4) Index redundancy mechanism

5) Data Addition Processing

Single field key - data generation

Let's take the following data structure as an example

Field name Type Is the primary key? Explanation

id int Yes Begin with 1000000000001 to increase

data string Data to be acquired

According to the above data structure, 600 million pieces of data can be created in the text file, which can
be written as follows:

 A B

1 1234567890qwertyuiopasdfghjklzxcvbnm

2 =file("single600m.txt")

3 for 6000 =to((A3-1)*100000+1,A3*100000).new(~+1000000000000:id,rands(A1,rand(40)+160):data)

4 =A2.export@at(B3)

Single field key – Exercise problem

From 600 million records, find records corresponding to 10,000 randomly distributed key set

Search of massive random key values

Single Field Key-Index Principle

Example of dichotomy : Find User Information with ID 82

Find 25 for the first time

Find 78 for the second time

Find 82 for the third time

In this case, sequential lookup (traversal) requires nine comparisons, while

dichotomy only uses three comparisons.

The time complexity of sequential lookup is O (n).

The time complexity of dichotomy lookup is O (log_2).

Ordered users table

Single field key - hierarchical index

00000001~10000000

10000001~20000000

…

00000001~00001000

00001001~00002000

…

10000001~10001000

…

10249001~10250000

…

…

10249527

…

10250000

pos

pos

pos

pos

Large index can not fit in memory, and there is no need to fit in memory, hierarchical index can be used.

Three-level hierarchical index schematic diagram

Single field key - Key value type

For non-integer key values, they should first be converted to integers.

License number Data column

京A12345 …

沪B56789 …

… …

ID number Data column

110105197608028736 …

310104199809209731 …

… …

License number Data column

100112345

110256789

ID number Data column

11 01 05 19 76 08 02 87 36 …

31 01 04 19 98 09 20 97 31 …

… …

Multi-layer serial number Convert to numbers

Single field key - key value sorting

Key value set to be searched is orderly, so we can avoid turning back when searching.

10000001~10001000

…

10249001~10250000

…

…

10249527

…

10249981

…

pos

pos

pos

pos

pos

Example： According to the ordered set of key value, search（749、…、10000879、…、10249527、10249981、…）

00000001~10000000

10000001~20000000

…

00000001~00001000

00001001~00002000

…
…

10000879

…

pos

…

00000749

…

pos

pos

pos

pos

pos

Because the set of
key value to be
searched is
ordered, These
two key values
10249527 and
10249981
fall into the same
index block, and
there is no need
to go back and
compare.

Because the set of key value to be searched
is orderly, the search for 10000879 does not
need to start from the beginning, just skip
the index blocks that do not satisfy the
condition and that have been searched.

Single field key - index cache

Cache Memory

……

Random key-value queries directly

using indexes:

First query， time :80 seconds

Second query，time:78 seconds

Third query，time:77 seconds

Fourth query，time:76 seconds

……

Nth query, time:25 seconds

Each time an index is used for key value queries,
the operating system generates a cache.

After N times of using index queries, the efficiency
will reach the limit.

Index caches can be pre-loaded so that each query

is in the most efficient state.

Cache Memory

Preload index cache:

Each random key query takes

about 25 seconds

Sorting index

Preload Index Cache to Improve Query Efficiency

Single field key – Create group table and index

Generate a group table file that is stored row-wise using the text file that has been created.

 A

1 =file("single600m.txt").cursor@t()

2 =file("single600m.ctx").create@r(#id,data).append(A1)

 A

1 =file("single600m.ctx").create().index(id_idx;id)

Create a sort index of ID keys for the group table file.

Note: Key value id should be ordered in the table, because disk jitter can be relatively reduced when the set of key value
is concentrated.

Single field key - group table query

Random generation of 10,000 ids, use index to query.

 A B

1 =file("single600m.ctx").create() /Open the group table

2 =A1.index@3(id_idx) /Load three level index cache

3 =10000.(1000000000000+(rand(600000000)+1)).sort() /Randomly choose 10,000 ordered key values

4 =now() /Current time

5 =A1.icursor(;A3.contain(id),id_idx).fetch() /Batch key value search using index

6 =interval@ms(A4,now()) /Time used for searching

1. Key value sorting: The set of key value to be searched is ordered.

2. Index cache: Preload index cache before the search.

There are two points to note when querying:

Single field key - Oracle imports data and creates index

Import the created text file data into Oracle.

Oracle create table：create table single600m (id number(13),data varchar2(200));

Import text file content into table using Oracle's SqlLoader (omitted)

Oracle create index：create unique index idx_id_600m on single600m(id);

Single field key – Oracle query

Random generation of 10,000 ids, use index to query.

 A B

1 =10000.(1000000000000+rand(600000000)+1).sort() /Randomly choose 10,000 ordered key values

2 =A1.group((#-1)\1000) /Each 1000 key values are a group

3 =connect("oracle") /Establish database connection

4 =now() /Current time

5 =A2.(A3.query("select * from single600m where id in (?)",~)).conj() /Merge multiple query results

6 =interval@ms(A4,now()) /Time used for searching

7 >A3.close() /Close database connection

Grouping into several groups of 1000 entries because the maximum number of in in the database supports 1000
entries.

Multi field key

Let's take the following data structure as an example

Field name Type Is the primary key? Explanation

type string enumerable

id int The ID of each enumeration type increases from 1

data string Data to be acquired

Type and ID fields are used as joint primary keys to determine a record.

Multi field key -- Merge primary keys

It involves the storage and comparison of sets, and is slower than single field key.

In order to achieve high performance, a more common method is to combine multi-field key into single-
field key.

type id

type_a 934875

type_a 934876

… …

type_b 137

type_b 138

… …

nid

10010934875

10010934876

…

10020000137

10020000138

…

For the NID after merging primary keys, it can be processed according to the method of single field
key. Pay attention that the NID needs to be ordered.

Multithread Query

Multi-threaded Parallel Approach to Further Improve Performance

Big data file

Example: data file, 4 threads, ordered keys are divided into 4 segments in sequence

Ordered set of key values to be searched (divided into four parts equally)

Thread 1 Thread 2 Thread 3 Thread 4

First equally divided part of keys Second equally divided part of keys Third equally divided part of keys Fourth equally divided part of keys

Multithread Query – Group table

Multi-threaded Parallel Approach to Further Improve Performance

 A B

1 =file("single600m.ctx").create()

2 =A1.index@3(id_idx)

3 =10000.(1000000000000+(rand(600000000)+1)).sort()

4 =A3.group((#-1)\1000)

5 =now()

6 fork A4 =A1.icursor(;A6.contain(id),id_idx)

7 =B6.fetch()

8 =A6.conj()

9 =interval@ms(A5,now())

Attention should be paid to:
1. After sorting the random key set in A3, A4 is divided by the row number of A3, so as to ensure the key set of each

thread is concentrated.
2. The action of data fetching must be completed in each thread, so that the real parallel can be achieved.

Multithread Query - Oracle

Multi-threaded Parallel Approach to Further Improve Performance

 A B

1 =10000.(1000000000000+rand(600000000)+1).sort()

2 =A1.group((#-1)\1000)

3 =now()

4 fork A2 =connect("oracle")

5 =B4.query("select * from single600m where id in (?)",A4)

6 >B4.close()

7 =A4.conj()

8 =interval@ms(A3,now())

Grouping into several groups of 1000 entries because the maximum number of in in the database
supports 1000 entries.

Index redundancy mechanism

Column storage is often used when data needs to be traversed, but it is not suitable for searching.

Index redundancy mechanism can be used to improve the random search performance of column-stored
data.

 A

1 =file("single600m.txt").cursor@t()

2 =file("single600m.ctx").create@r(#id,data).append(A1)

Create column-stored group table

Create valued index

 A

1 =file("single600m.ctx").create().index(id_idx;id;data)

Use valued index file to search eliminates the need to read the original column-stored file.
Although the efficiency is better than the row-stored non-redundant sort index, it needs to pay
the cost that the disk space occupied is larger than the original column-stored file.

Comparison of testing results (1)

Time consumed（ms）

Single thread Multi-thread（10 threads）

Oracle Row-stored group table Index redundancy Oracle Row-stored group table Index redundancy

117322 20745 19873 39549 10975 9561

Processor Intel(R) Xeon(R) CPU E5-2670 @ 2.60GHz two core

Memory 64G

Hard disk SAS 1TB

Operating system centos6.8(64 bit)

Testing environment

Testing result

Extracting 100,000 batch random keys from 600 million pieces of data

Comparison of testing results (2)

Time consumed（ms）

Single thread Multi-thread（10 threads）

Oracle Row-stored group table Oracle Row-stored group table

56671 23990 35184 13264

Oracle Row-stored group table Oracle Row-stored group table

151089 24421 95987 14623

Processor Intel(R) Xeon(R) CPU E5-2670 @ 2.60GHz two cores

Memory 64G

Hard disk SSD 1TB

Operating system centos6.8(64 bit)

Testing environment

Testing result

Characteristic summary: The index performance of esProc is basically related only to the amount of data extracted, has
little relation with the total amount of data, but the index performance of traditional database is very much related with
the total amount of data.

Extracting 100,000 batch random keys from 600 million pieces of data

Extracting 100,000 batch random keys from 1.2 billion pieces of data

Data update

Update of modified file data

 A B

1 =add_file.create().update(update_data) /Update file data

2 =add_file.reset@q()
/Rapid Reorganization of
Supplementary Area Data

When recent cumulative incremental data change

date price …

…

2019-04-23 50

2019-04-24 51

2019-04-25 50

2019-04-26 49

2019-04-27 50

date price …

…

2019-04-23 50

2019-04-24 50

2019-04-25 50

2019-04-26 50

2019-04-27 50

date price …

2019-04-24 51

2019-04-26 49

update data (Supplementary Area)

Rapid reorganization means that
only the part after the first
complement data appears is
reorganized. Previous data need not
be rewritten.

Data addition

 A B

1 =file("single600m.ctx")

2 =A1.create().cursor() /Create group table cursor

3 =file("singleadd.txt")

4 =A3.cursor@t() /Added txt cursor

5 =file("single.ctx_temp").create(#id,data) /Create new group table

6 =A5.append([A2,A4].mergex(id)) /After merging and sorting, the results are saved into the new

group table

Note: The group table and TXT in A1 and A3 need to be ordered by ID.

When keys are ordered, add new data directly.

When the keys are not ordered, new and old files need to get in order first, and then merge and sort.

Data addition

Historical File
Cumulative Incremental

File

Daily Incremental File

Increments accumulated at the beginning of the
month merged into history

Daily increment
added to cumulative
increment

Addition of Daily Data Files

File group

 A B C

1 if day==1 =file(["his_file","add_file"]).reset@m() //Reorganization
at the beginning
of the month

2 =file("add_file").create().append@m(add_data) /Daily supplement

Increments
updating

 A B

1 =file(["his_file","add_file"]) /File group

2 =A1.create().icursor(;id=="3197608180") /Query

File group query

To be continued in the next chapter

• Search of Large Quantity of Random Key Values in Cluster

Coming soon

