

Set operation

Genericity of Sets

Loop for sets

Understanding aggregation

1

2

3

4

CONTENTS

5

01

Set Operations - Simple and Concise

where
select * from EMPLOYEE where GENDER=“M”

and DEPT=“HR”;

select * from EMPLOYEE where GENDER="M"
intersect
select * from EMPLOYEE where DEPT="HR";

select * from EMPLOYEE where GENDER="M"
union
select * from EMPLOYEE where DEPT="HR";

select * from EMPLOYEE where GENDER="M"
minus
select * from EMPLOYEE where DEPT="HR";

Minus

Union

select * from EMPLOYEE where GENDER="M"

and DEPT!="HR";

select * from EMPLOYEE where GENDER="M"

or DEPT="HR"; select * from EMPLOYEE where GENDER="M"
uninon all
select * from EMPLOYEE where DEPT="HR";

Union
all

Set operation

Intersect

The Basic Operations of Sets-Intersect, Minus and Union

A B
1 =demo.query("select * from EMPLOYEE")
2 =A1.select(GENDER=="M")
3 =A1.select(DEPT=="HR")
4 =A1.select(GENDER=="M"&&DEPT=="HR") =A2^A3
6 =A1.select(GENDER=="M"&&DEPT!="HR") =A2\A3
8 =A1.select(GENDER=="M"||DEPT=="HR") =A2&A3

Conditional Query Set operations

Set Operations - Simple and Concise

02

A B
1 =demo.query("select * from EMPLOYEE")
2 =A1(1) /The first record

3 =A2.NAME="Jim" /Modify the NAME field of the first record

A2 is the pointer of the first record in set A1 , and it is not the real data, when the data in A1 changes, A2 changes accordingly.

A1 when A1
executed

A1 after A3 executed

A2 when A2 executed A2 after A3 executed

Understanding discreteness-separate record

Understanding discreteness-
separate record

NAME GENDER AGE
Rebecca F 44
Ashley M 38
Rachel F 48
Emily F 34

Ashley M 43
Matthew M 34

Alexis F 46
Megan F 39
Victoria F 35
Ryan M 43

SPL：A.select(AGE>40) SQL：select * from A where AGE>40

Data pointer
New data

table

1

2

3

4

5

6

7

8

9

10

Data table

Data pointer

NAME GENDER AGE
Rebecca F 44
Rachel F 48
Ashley M 43
Alexis F 46
Ryan M 43

1

3

5

7

10

Result

Statement

1
3
5
7

10

A
1 =file(“E:/txt/name.txt”).import@t()
2 =A1.select(AGE>40)
3 =A1.select(GENDER==“M”)
4 =A2^A3

2
5
6

10

Intersection 5
10

NAME GENDER AGE
Rebecca F 44
Ashley M 38
Rachel F 48
Emily F 34

Ashley M 43
Matthew M 34

Alexis F 46
Megan F 39
Victoria F 35
Ryan M 43

1

2

3

4

5

6

7

8

9

10

Data table

Data pointer

Intersection operation of SPL

Understanding discreteness-
separate record

Achieving High Efficiency by Discreteness

select * from EMPLOYEE where GENDER="M" and DEPT="HR";
select * from EMPLOYEE where GENDER="M" and DEPT!="HR";
select * from EMPLOYEE where GENDER="M" or DEPT="HR";

select * from EMPLOYEE where GENDER="M"
intersect
select * from EMPLOYEE where DEPT="HR";

select * from EMPLOYEE where GENDER="M"
union
select * from EMPLOYEE where DEPT="HR";

select * from EMPLOYEE where GENDER="M"
minus
select * from EMPLOYEE where DEPT="HR";

Where statement advocated by
SQL

The intersection, difference and union
operations of SPL are just to compare
record pointers, while the intersection,
difference and union operations of SQL
are to compare full records and
relatively slow. This is why SQL
advocates using the form above and
UNION ALL.

Set Operations of SQL

select * from EMPLOYEE where GENDER="M"
union all
select * from EMPLOYEE where DEPT="HR";

Minus

Union

Union
all

Intersect

SELECT (SELECT age FROM employee WHERE name=’Jim’) – (SELECT age FROM employee

WHERE name=’Lucy’) FROM dual

SELECT (SELECT salary FROM employee WHERE name=’ Jim’) – (SELECT salary FROM employee

WHERE name=’ Lucy’) FROM dual

A B
1 =file("E:/txt/employees.txt").import@t()
2 =A1.select@1(name==“Jim”) /Select record of Jim

3 =A1.select@1(name==“Lucy”) /Select record of Lucy

4 =A2.age-A3.age /Calculate age difference

5 =A2.salary-A3.salary /Calculate salary difference

6 /Query results can exist independently outside the set and can be used repeatedly.

Set orientation and Discreteness-
Flexible Computing

Calculate the age difference and salary
difference between Jim and Lucy

SPL

SQL

Function Description
A.maxp(Chinese) Return the highest record of Chinese

A.max(Chinese) Returns the maximum value of Chinese

A.maxp@a(Chinese) Returns all the highest records of Chinese

A.maxp vs A.max

Sequence Function Result Description

[11,5,4,3,2,1,4,5,3]

A.maxp(~*~) 11 Returns a member that maximizes the square

A.max(~*~) 121 Returns the maximum square value

A.maxp(~%3) 11 Returns a member that maximizes the
remainder of division 3

A.max(~%3) 2 Returns the maximum of the remainder
divided by three

A.maxp@a(~%3) [11,5,2,5] Returns all sequence of members that
maximize the remainder of division 3

A.maxp@z(~%3) 5 Look from back to front

A.maxp@za(~%3) [5,2,511] Look for all the members from back to front

Data

Set orientation and Discreteness-
Flexible Computing

Calculate the natural days between the last lowest price and the earliest highest price of the
stock 600036 in 2017.

with t as (select *, row_number() over(order by tdate) rn from stktrade

where sid='600036' and tdate between '2017-01-01' and '2017-12-31'),

t1 as (select * from t where close=(select min(close) from t)),

t2 as (select * from t where close=(select max(close) from t)),

t3 as (select * from t1 where rn=(select max(rn) from t1)),

t4 as (select * from t2 where rn=(select min(rn) from t2))

select abs(datediff(t3.tdate,t4.tdate)) inteval

from t3,t4;

Set orientation and Discreteness-
Flexible Computing

A
1 =connect("mysql")
2 =A1.query@x("select * from stktrade where sid='600036'and tdate between'2017-01-

01'and'2017-12-31'order by tdate")
3 =A2.minp@z(close)
4 =A2.maxp(close)
5 =abs(A3.tdate-A4.tdate)

A3: Look from back to front for the record of close's first minimum

A4: Find the record of close's first maximum from front to back

Calculate the natural days between the last lowest price and the earliest highest price of
the stock 600036 in 2017.

Set orientation and Discreteness-
Flexible Computing

03

The results of A1 and A2 are as follows:

Genericity of Sets - Unexpected Convenience

A B

1 [1,a3,2,5.4,$[4.5],2011-8-8] /Sequence

2 =[A1,4] /Expression

Double click

Is it meaningless for the actual business?

Count the total number of women in employees and family members.

A B
1 =demo.query("select * from EMPLOYEE")
2 =demo.query("select * from FAMILY")
3 =A1|A2 /Merge records to form sequence

4 =A3.count(left(GENDER,1)=="F") /Count the total number of women in
employees and family members.

A1~A4 results:

Genericity of Sets - Unexpected Convenience

A2~A5 results

The arbitrariness of set members also allows the set itself to be a member.

A B
1 [[1,2,3,4,5],[1,3,5,7,9],[2,3,5,7]]
2 =A1.conj() /conj
3 =A1.isect() /isect
4 =A1.(~.sum()) /sum of all colums
5 =A1.(~.(~*~)) /squaring of column elements

A2 A3 A4 A5

Genericity of Sets - Unexpected Convenience

Array can also be a member of a sequence

A B

1 =demo.query("select * from EMPLOYEE")

2 =A1.select(STATE=="California") /Select employees in California

3 =A1.select(STATE=="Indiana") /Select employees in Indiana

4 =A1.select(STATE=="Florida") /Select employees in Florida

5 =[A2,A3,A4] /Place the above three arrays in the same sequence

6 =A5.(~.count()) /Calculate the number of employees in each array
separately

7 =A5.(~.STATE) /the names of the states in the first record of each array.

8 =A5.(STATE) /the names of the states in the first record of each array

9 =A5.new(STATE,~.count():Count) /Calculate the number of employees in each array and
generate a table

A6~A9 results

A6 A7 A8 A9

Genericity of Sets - Unexpected Convenience

Replace field values with records?
Find out the employees whom the age of couples is over 80

A B

1 =file("E:\\txt\\Employees.txt").import@t().keys(ID) /Set ID as primary key

2 =file("E:\\txt\\EmpRel.txt").import@t()

3 =A2.select(Relationship=="Spouse") /Filter the spouse relationship in A2

4 >A3.switch(Emp1,A1;Emp2,A1) /Replace both employee fields in the employee relationship table
with corresponding records

5 =A3.select(age(Emp1.Birthday)+age(Emp2.Birthday)>80) /Filter out records with the sum of ages greater than 80

6 =A5.run(~.modify(Emp1.Name:Emp1,Emp2.Name:Emp2)) /Modify the records to the Name filed of records

A3 when A3 executed A3 after A4 executed

Emp1 field Emp2 field

A5 after A6executed

A3 when A6 executed

A5 when A5 executed

Genericity of Sets - Unexpected Convenience

04

A B

1 [2,3,6,1,8]

2 =A1.sum() /Sum 20

3 =A1.avg() /Avg 4.0

4 =A1.median() /Median 3

5 =A1.variance() /Variance 6.8

6 =A1.max() /Max 8

7 =A1.min() /Min 1

Set operations Loop for sets - different for and while

A B
1 [2,3,6,1,8]
2 =A1.(~+~) /~Refer to current members

3 =demo.query("select * from EMPLOYEE")
4 =A4.(NAME) /Return a sequence composed of NAME fields

A.(X) - Calculate x for each member and return the
composed sequence

2
3
6
1
8

4
6
12
2
16

~+~
4
5

12
2

16

Rebecca
Ashley
Rachel
Emily
Ashley

~.NAME

Loop for sets - different for and while

A.f(x) A.(x).f()

A.min(BIRTHDAY) A.(BIRTHDAY).min()

A.(x)

A.(BIRTHDAY)

Computed
column

Aggregate
calculation

Step 1 Step 2

A.f(x) Loop for sets - different for and while

A B

1 [2,3,6,1,8]

2 =A1.sum(~*~) /Sum of squares 114

3 =demo.query("select * from EMPLOYEE")

4 =A3.min(~.BIRTHDAY) /Min value of birthday1968-11-05

5 =A3.min(BIRTHDAY) /Min value of birthday1968-11-05

6 =A3.avg(interval@y(BIRTHDAY,HIREDATE)) /Average length of service 27.282

Aggregation operation with parameters Loop for sets - different for and while

A B

1 [1,2,3,4,5]

2 =A1.new(~:Origin,~*~:Square) /Create new table of origin and square

Result:

A.new()—— Create new table Loop for sets - different for and while

Generate table from table

A B
1 =demo.query("select * from EMPLOYEE")
2 =A1.new(NAME,age(BIRTHDAY):Age) /Generate a new table with NAME and Age as

fields

3 =A1.new(NAME) /Generate a new table with NAME as the field

4 =A1.(NAME) /Sequence composed of NAME field

A2~A4 results:

Loop for sets - different for and while

A1~A2 results:

derive() function in addition to new()

A B

1 =demo.query("select * from EMPLOYEE")

2 =A1.derive(NAME+SURNAME:FULLNAME,age(BIRTHDAY):Age) /Add FULLNAME and Age fields

Loop for sets - different for and while

How to construct a constant table?

A7 when A7 executed A7 after A8 executed

A B C D
1 Natalie M 44 173
2 Jessica M 32 182
3 Brianna F 26 157
4 Emma M 43 168
5 Zachary F 29 165
6 Sophia F 36 170
7 =create(NAME,GENDER,AGE,HEIGHT)
8 =A7.record([A1:D6])

Loop for sets - different for and while

A B

1 =demo.query("select * from EMPLOYEE")

2 =A1.new(NAME,age(BIRTHDAY):Age) /Create new table with NAME and
Age fields

3 =A2.run(Age=Age+1) /Modify the Age field

Increase the age of all employees by 1

A2 when A2 executed A2 after A3 executed

A.run() Loop for sets - different for and while

A1, B3 results:

Data are stored in documents named after year and month by month (in the form of "201801.txt" and "201901.txt").
Now it is necessary to make statistics on all months’ data and find out the documents for the required months.

A B

1 =to(0,364).(date("2018-01-01")+~) /The date sequence of one year is obtained by loop function

2 for A1 ="E:/txt/file/"+string(year(A2))+string(month(A2),"00")+".txt"

3 =@|if(file(B2).exists(),B2)

Loop for sets - different for and while

A1~A3 results:

A B

1 =to(0,364).(date("2018-01-01")+~)

2 =A1.("E:/txt/file/"+string(year(~))+string(month(~),"00")+".txt") /Generate file name

3 =A2.select(file(~).exists()) /Select existing files

Loop for sets - different for and while

A table contains surnames and given names, which are
now used to compose the names of the test data by
Cartesian product. Please skillfully utilize ~, and get：

[Emily Smith, Alexis Smith, Ryan Smith,
Emily Wilson, Alexis Wilson, Ryan Wilson,
Emily Johnson, Alexis Johnson, Ryan Johnson]

Nested loops Loop for sets - different for and while

A2~A7 results:

A B
1 =file("E:/txt/fullname.txt").import@t()
2 =A1.(SURNAME)
3 =A1.(NAME)
4 =A3.~/" "/A2.~ /No loop
5 =A2.(A3.~/" "/A2.~) /Loop A2
6 =A3.(A2.(A3.~/" "/A2.~)) /Loop A3
7 =A3.(A2.(A3.~/" "/~)).conj() /Simplify and merge

Loop for sets - different for and while

A2~A6 results:

[Emily Emily, Emily Alexis, Emily Ryan

Alexis Emily, Alexis Alexis, Alexis Ryan,

Ryan Emily, Ryan Alexis, Ryan Ryan]

A B
1 =file("E:\\txt\\name.txt").import@t()
2 =A1.(NAME)
3 =A2.~/" "/A2.~ /No loop
4 =A2.(A2.~/" "/A2.~) /Loop A2
5 =A2.(A2.(A2.~/" "/A2.~)) /Loop A2
6 =A2.(A2.(A2.~/" "/~)).conj() /Simplify and merge

HOW

Combination
of names

Loop for sets - different for and while

A3~A5 results:

A B
1 =file("E:\\txt\\name.txt").import@t()

2 =A1.(NAME)

3 =A2.(A2.(A2.~/" "/A2.~)) /Confusing~

4 =A2.((x=A2.~,A2.(x/" "/~))) /Introducing temporary variable x to refer to
outer A1

5 =A2.((x=~,A2.(x/" "/~))).conj() /Simplify and merge

Loop for sets - different for and while

05

Understanding aggregation

Generally aggregate functions return single value (such as sum/max), but we can also allow

aggregate functions to return sets, so topN can be treated as aggregate function.

A.top(3,Math)

Returned set

Example: Look up the three lowest math scores

Score table

TopN can also return the corresponding records (similar to maxp/minp).

Example: Check the scores of the three lowest math scores and the three highest total scores.

A.top(3;Math)

A.top(3;-
(Math+Chinese+English))

Score table

Understanding aggregation

TopN functions, as aggregation functions, can be used in grouping as sum/count.

Calculate the increase rate of each stock in the last two days.

A
1 =file("E:/txt/stocknew_price1.txt").import@t()
2 =A1.groups(stockid;top(2;-DT)) /The last two days of trading records are taken after

grouping.

3 =A2.new(stockid,#2(1).CL-#2(2).CL:rises) /Calculate the increase rate

A1~A3
Results:

Understanding aggregation

