

CONTENTS

Loop for sets

5

Understanding aggregation

where

select * from EMPLOYEE where GENDER="M" and DEPT="HR";

select * from EMPLOYEE where GENDER="M"
and DEPT!="HR";

select * from EMPLOYEE where GENDER="M"
or DEPT="HR";

Set operation

select * from EMPLOYEE where GENDER="M"
intersect
select * from EMPLOYEE where DEPT="HR";

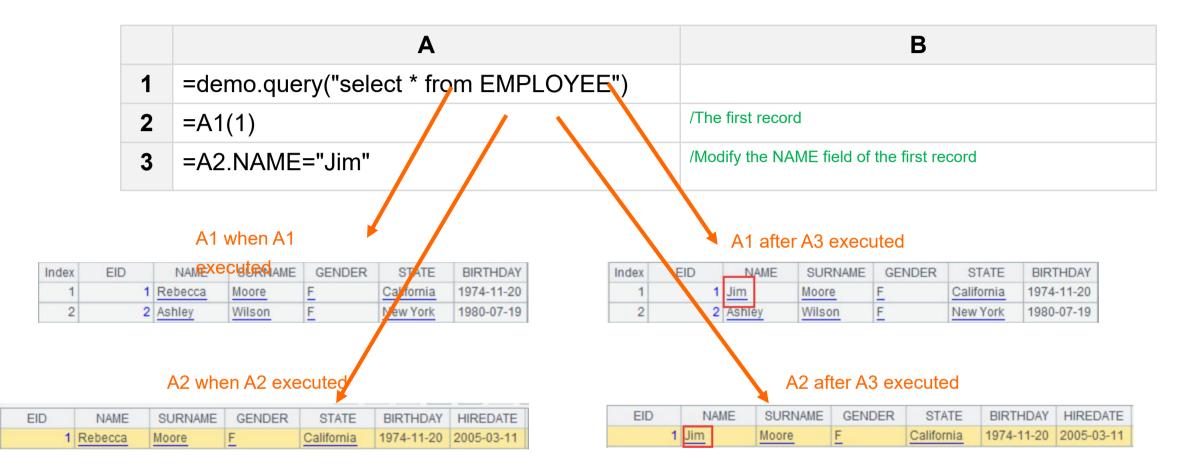
Intersect

Minus

```
select * from EMPLOYEE where GENDER="M"
minus
select * from EMPLOYEE where DEPT="HR";
```

select * from EMPLOYEE where GENDER="M"
union
select * from EMPLOYEE where DEPT="HR";

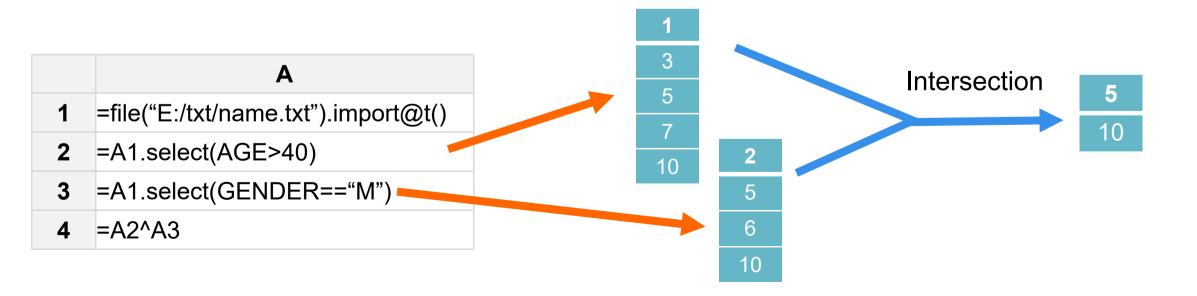
select * from EMPLOYEE where GENDER="M" uninon all select * from EMPLOYEE where DEPT="HR";


Union all

The Basic Operations of Sets-Intersect, Minus and Union

	Α	В
1	<pre>=demo.query("select * from EMPLOYEE")</pre>	
2	=A1.select(GENDER=="M")	
3	=A1.select(DEPT=="HR")	
4	=A1.select(GENDER=="M"&&DEPT=="HR")	=A2^A3
6	=A1.select(GENDER=="M"&&DEPT!="HR")	=A2\A3
8	=A1.select(GENDER=="M" DEPT=="HR")	=A2&A3
	Conditional Query	Set operations

Set orientation and Discreteness


A2 is the pointer of the first record in set A1, and it is not the real data, when the data in A1 changes, A2 changes accordingly.

Understanding discreteness-		NAME	GENDER	AGE
separate record	1	Rebecca	F	44
	2	Ashley	М	38
	3	Rachel	F	48
Data table	4	Emily	F	34
	5	Ashley	Μ	43
	6	Matthew	Μ	34
	7	Alexis	F	46
	8	Megan	F	39
Data pointer	9	Victoria	F	35
	10	Ryan	М	43

SPL: A.select(AGE>40) **Statement SQL:** select * from A where AGE>40

Result			NAME	GENDER	AGE
Result	1		Rebecca	F	44
	3		Rachel	F	48
Data pointer	5	New data	Ashley	Μ	43
	7		Alexis	F	46
	10	table	Ryan	Μ	43

Understanding discreteness-		NAME	GENDER	AGE
separate record	1	Rebecca	F	44
	2	Ashley	М	38
Intersection operation of SPL	3	Rachel	F	48
	4	Emily	F	34
Data table 🥌	5	Ashley	Μ	43
	6	Matthew	Μ	34
	7	Alexis	F	46
	8	Megan	F	39
Data pointer	9	Victoria	F	35
	10	Ryan	М	43

Set Operations of SQL

select * from EMPLOYEE where GENDER="M" and DEPT="HR"; select * from EMPLOYEE where GENDER="M" and DEPT!="HR"; select * from EMPLOYEE where GENDER="M" or DEPT="HR";

select * from EMPLOYEE where GENDER="M" intersect select * from EMPLOYEE where DEPT="HR";

select * from EMPLOYEE where GENDER="M" minus select * from EMPLOYEE where DEPT="HR";

select * from EMPLOYEE where GENDER="M" union select * from EMPLOYEE where DEPT="HR";

select * from EMPLOYEE where GENDER="M"
union all
select * from EMPLOYEE where DEPT="HR";

Union

all

Minus

Intersect

Where statement advocated by SQL

The intersection, difference and union operations of SPL are just to compare record pointers, while the intersection, difference and union operations of SQL are to compare full records and relatively slow. This is why SQL advocates using the form above and UNION ALL.

SELECT (SELECT age FROM employee WHERE name='Jim') – (SELECT age FROM employee WHERE name='Lucy') FROM dual SELECT (SELECT salary FROM employee WHERE name='Jim') – (SELECT salary FROM employee WHERE name='Lucy') FROM dual

	Α	В
1	=file("E:/txt/employees.txt").import@t()	
2	=A1.select@1(name=="Jim")	/Select record of Jim
3	=A1.select@1(name=="Lucy")	/Select record of Lucy
4	=A2.age-A3.age	/Calculate age difference
5	=A2.salary-A3.salary	/Calculate salary difference
6	/Query results can exist independently outside the set and can be u	used repeatedly.

A.maxp vs A.max

Sequence	Function	Result	Description
	A.maxp(~*~)	11	Returns a member that maximizes the square
	A.max(~*~)	121	Returns the maximum square value
	A.maxp(~%3)	11	Returns a member that maximizes the remainder of division 3
[11,5,4,3,2,1,4,5,3]	A.max(~%3)	2	Returns the maximum of the remainder divided by three
	A.maxp@a(~%3)	[11,5,2,5]	Returns all sequence of members that maximize the remainder of division 3
	A.maxp@z(~%3)	5	Look from back to front
	A.maxp@za(~%3)	[5,2,511]	Look for all the members from back to front

Data Chinese Name Math English 84 90 84 Natalie English 序号 Name Math Chinese 1 Natalie 84 90 84 Function Description 2 Jessica 87 88 78 3 Brianna 75 89 90 值 4 Emma 88 84 94 A.maxp(Chinese) Return the highest record of Chinese 90 85 75 5 Zachary 81 6 Sophia 74 93 86 A.max(Chinese) Returns the maximum value of Chinese 90 95 7 Hannah 76 序号 Name Math Chinese English 71 86 8 Christopher 81 A.maxp@a(Chinese) Returns all the highest records of Chinese 1 Natalie 90 98 81 84 84 9 Sean 86 90 75 87 78 89 10 Tyler 93 2 Brianna

Calculate the natural days between the last lowest price and the earliest highest price of the stock 600036 in 2017.

with t as (select *, row_number() over(order by tdate) rn from stktrade where sid='600036' and tdate between '2017-01-01' and '2017-12-31'), t1 as (select * from t where close=(select min(close) from t)), t2 as (select * from t where close=(select max(close) from t)), t3 as (select * from t1 where rn=(select max(rn) from t1)), t4 as (select * from t2 where rn=(select min(rn) from t2)) select abs(datediff(t3.tdate,t4.tdate)) inteval from t3,t4;

Calculate the natural days between the last lowest price and the earliest highest price of the stock 600036 in 2017.

	Α
1	=connect("mysql")
2	=A1.query@x("select * from stktrade where sid='600036'and tdate between'2017-01- 01'and'2017-12-31'order by tdate")
3	=A2.minp@z(close)
4	=A2.maxp(close)
5	=abs(A3.tdate-A4.tdate)

A3: Look from back to front for the record of close's first minimum

A4: Find the record of close's first maximum from front to back

Genericity of Sets

 \mathbb{R}^{2}

2 5.4

	Α	В
1	[1,a3,2,5.4,\$[4.5],2011-8-8]	/Sequence
2	=[A1,4]	/Expression

The results of A1 and A2 are as follows:

Index	Member
1	1
2	<u>a3</u>
3	2
4	5.4
5	\$[4.5]
6	2011-08-08

		Double click	Index	Member
	Double	e click	1	
			2	<u>a3</u>
			3	
Index	Member		4	
1	[1,a3,2,]			
2	4		5	\$[4.5]
			6	2011-08-08

Value

275

Is it meaningless for the actual business?

Count the total number of women in employees and family members.

	Α	В
1	<pre>=demo.query("select * from EMPLOYEE")</pre>	
2	=demo.query("select * from FAMILY")	
3	=A1 A2	/Merge records to form sequence
4	=A3.count(left(GENDER,1)=="F")	/Count the total number of women in employees and family members.

	٨	1. 1.	results							Index	Membe
	A	. I~A4 I	esuits.	•							[1,Rebecca,Moore,
										2	[2,Ashley,Wilson,]
										3	[3,Rachel,Johnson,
Index	EID	NAME	SURNAME	GENDER	STATE	BIRTHDAY	HIREDATE	DEPT	SALARY		
1		1 Rebecca	Moore	<u>F</u>	California	1974-11-20	2005-03-11	R&D	7000	Index	Member
2		2 Ashley	Wilson	F	New York	1980-07-19	2008-03-16	Finance	11000		
3		3 Rachel	Johnson	F	New Mexico	1970-12-17	2010-12-01	Sales	9000		[498,Daniel,Smith,
				-		-				499	[499,Nicole,Smith,
				Index	EID	NAME	RELATION	GENDER	AGE	500	[500,Joseph,Smith,
				1					15	504	[1,Jacky,child,]
						Jacky Lindo	child	Male	17	502	[1,Linda,child,]
				2		Linda	child	Female			
				3	1	Vincent	spouse	Male	52	503	[1,Vincent,spouse,

The arbitrariness of set members also allows the set itself to be a member.

5

	Α	В
1	[[1,2,3,4,5],[1,3,5,7,9],[2,3,5,7]]	
2	=A1.conj()	/conj
3	=A1.isect()	/isect
4	=A1.(~.sum())	/sum of all colums
5	=A1.(~.(~*~))	/squaring of column elements

	A2	
	Index	Member
A2~A5 results	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	

A3

Member	Index
3	1
5	2

A4

Member	Index
15	1
25	2
17	3

A5

	Member
1	[1,4,9,]
2	[1,9,25,]
3	[4,9,25,]

Array can also be a member of a sequence

	Α	В
1	=demo.query("select * from EMPLOYEE")	
2	=A1.select(STATE=="California")	/Select employees in California
3	=A1.select(STATE=="Indiana")	/Select employees in Indiana
4	=A1.select(STATE=="Florida")	/Select employees in Florida
5	=[A2,A3,A4]	/Place the above three arrays in the same sequence
6	=A5.(~.count())	/Calculate the number of employees in each array separately
7	=A5.(~.STATE)	/the names of the states in the first record of each array.
8	=A5.(STATE)	/the names of the states in the first record of each array
9	=A5.new(STATE,~.count():Count)	/Calculate the number of employees in each array and generate a table

A6~A9 results

Δ	6	
	U	

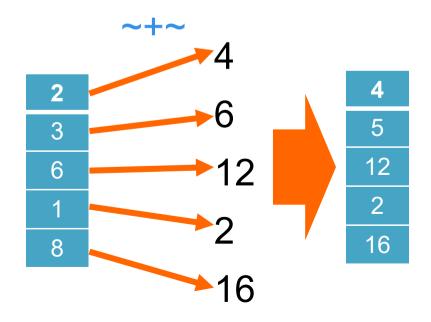
Member	Index
55	1
7	2
62	3

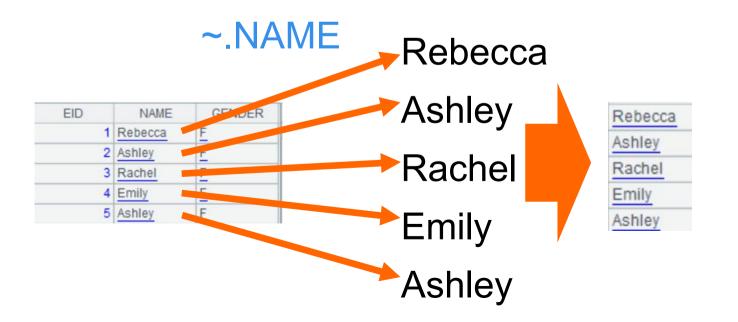
A7

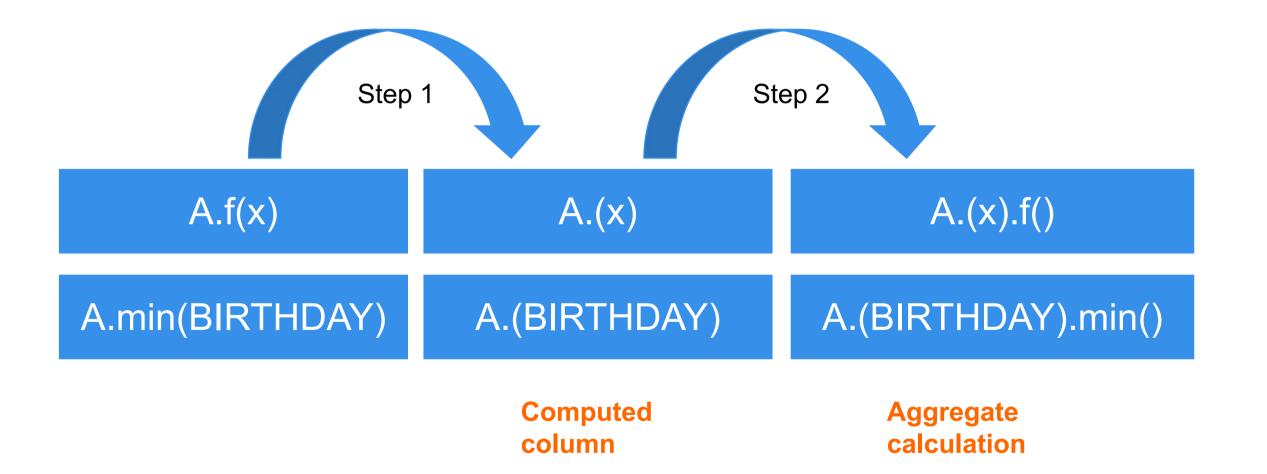
		NI AU				
Index	Member	Index	Member	Index	STA	
1	California	1	California	1	Califor	
2	Indiana	2	Indiana	2	Indiana	
3	Florida	3	Florida	3	Florida	

A8

Index	Member
1	California
2	Indiana
3	Florida

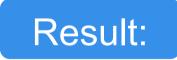

Index	STATE	Count
1	California	55
2	Indiana	7
3	Florida	62


						A3 w	when A6 exec	uted	ndex Emp1 1 21	Emp2	Relationship
		Α						В	2 <u>Tiger</u> 3 Jim	Mike Howard	Spouse Spouse
									4 <u>Ed</u>	Lucy	Spouse
1	=file("E:\\txt\\Employees.txt").import@t().keys(ID)			/	/Set ID as primary key						
2	=file("E:\\txt\\EmpRel.txt").	import@t()									
3	=A2.select(Relationship==	="Spouse")		/	Filter the	spouse	relationship	in A2			
4	>A3.switch(Emp1,A1;Emp2,A1)						nployee fields ng records	in the e	mployee re	lationship	o table
5	=A3.select(age(Emp1.Birt	hday)+age(Emp2.Bi	rth (ay)>80)		Filter out	t records	with the sur	n of ages	greater the	an 80	
6	=A5.run(~.modify(Emp1.N	ane:Emp1,Emp2.N	ame Emp2))		Modify th	ne recon	to the Nar	ne filed o	f records		
A	3 when A3 executed	A3 after A4 exe	cuted	A5 when	A5 exec	uned	A5	after A6e	Xeculed		
Index	Emp1 Emp2 Relationship	Index Emp1 En	np2 Relationship	Index	Emp1	Emp2	Relationship	Inde	x Emp1	Emp2	Relationship
1	21 22 <u>Spouse</u>	1 21 22	Spouse		10	1	Spouse		1 Tiger	Mike	Spouse
2	10 1 Spouse	2 10 1	S, ouse	2		19	Spouse			Howard	Spouse
3	5 19 Spouse	3 5 19	Spouse	3	16	3	Spouse		3 <u>Ed</u>	Lucy	Spouse
4	16 3 Spouse Emp1 field	4/16 3	Spouse		Emp	o2 field					
ID DI	Name Gender Post Birl	hday AccountNo BaseP	ay	ID Name	Gend	ier Pr	ost Birthday	AccountNo	BasePay		
21 Joe	Male R&D Leader 1984	- 09-1 528924335 350	0.0	22 Ken	Female		1982-07-1	. 824387323	-		



	Α	В
1	[2,3,6,1,8]	
2	=A1.sum()	/Sum 20
3	=A1.avg()	/Avg 4.0
4	=A1.median()	/Median 3
5	=A1.variance()	/Variance 6.8
6	=A1.max()	/Max 8
7	=A1.min()	/Min 1

	Α	В
1	[2,3,6,1,8]	
2	=A1.(~+~)	/~Refer to current members
3	<pre>=demo.query("select * from EMPLOYEE")</pre>	
4	=A4.(NAME)	/Return a sequence composed of NAME fields



	Α	В
1	[2,3,6,1,8]	
2	=A1.sum(~*~)	/Sum of squares 114
3	=demo.query("select * from EMPLOYEE")	
4	=A3.min(~.BIRTHDAY)	/Min value of birthday1968-11-05
5	=A3.min(BIRTHDAY)	/Min value of birthday1968-11-05
6	=A3.avg(interval@y(BIRTHDAY,HIREDATE))	/Average length of service 27.282

	Α	В
1	[1,2,3,4,5]	
2	=A1.new(~:Origin,~*~:Square)	/Create new table of origin and square

Index	Origin	Square
1	1	1
2	2	4
3	3	9
4	4	16
5	5	25

	Α	B			
1	=demo.query("select * from EMPLOYEE")				
2	=A1.new(NAME,age(BIRTHDAY):Age)	/Generate a new table with NAME and Age as fields			
3	=A1.new(NAME)	/Generate a new table with NAME as the field			
4	=A1.(NAME)	/Sequence composed of NAME field			

A2~A4 results:

Index	NAME	Age		
1	Rebecca	44		
2	Ashley	39		
3	Rachel	48		
4	Emily	34		
5	Ashley	44 35		
6	Matthew			
7	Alexis	46		
8	Megan	40		
9	Victoria	35		
10	Ryan	43		

Index	NAME
1	Rebecca
2	Ashley
3	Rachel
4	Emily
5	Ashley
6	Matthew
7	Alexis
8	Megan
9	Victoria
10	Ryan

Index		Member
1	Rebecca	
2	Ashley	
3	Rachel	
4	Emily	
5	Ashley	
6	Matthew	
7	Alexis	
8	Megan	
9	Victoria	
10	Ryan	

	Α	В
1	=demo.query("select * from EMPLOYEE")	
2	=A1.derive(NAME+SURNAME:FULLNAME,age(BIRTHDAY):Age)	/Add FULLNAME and Age fields

A1	∼ A2	results:

Index	EID	NAME	SURNAME	GENDER	STATE	BIRTHDAY	HIREDATE	DEPT	SALARY
1	1	Rebecca	Moore	F	California	1974-11-20	2005-03-11	R&D	7000
2	2	Ashley	Wilson	F	New York	1980-07-19	2008-03-16	Finance	11000
3	3	Rachel	Johnson	F	New Mexico	1970-12-17	2010-12-01	Sales	9000
4	4	Emily	Smith	F	Texas	1985-03-07	2006-08-15	HR	7000
5	5	Ashley	Smith	F	Texas	1975-05-13	2004-07-30	R&D	16000

Index	EID	NAME	SURNAME	GENDER	STATE	BIRTHDAY	HIREDATE	DEPT	SALARY	FULLNAME	Age
1	1	Rebecca	Moore	F	California	1974-11-20	2005-03-11	R&D	7000	RebeccaM	44
2	2	Ashley	Wilson	F	New York	1980-07-19	2008-03-16	Finance	11000	AshleyWils	39
3	3	Rachel	Johnson	F	New Mexico	1970-12-17	2010-12-01	Sales	9000	RachelJoh	48
4	4	Emily	Smith	F	Texas	1985-03-07	2006-08-15	HR	7000	EmilySmith	34
5	5	Ashley	Smith	F	Texas	1975-05-13	2004-07-30	R&D	16000	AshleySmith	44

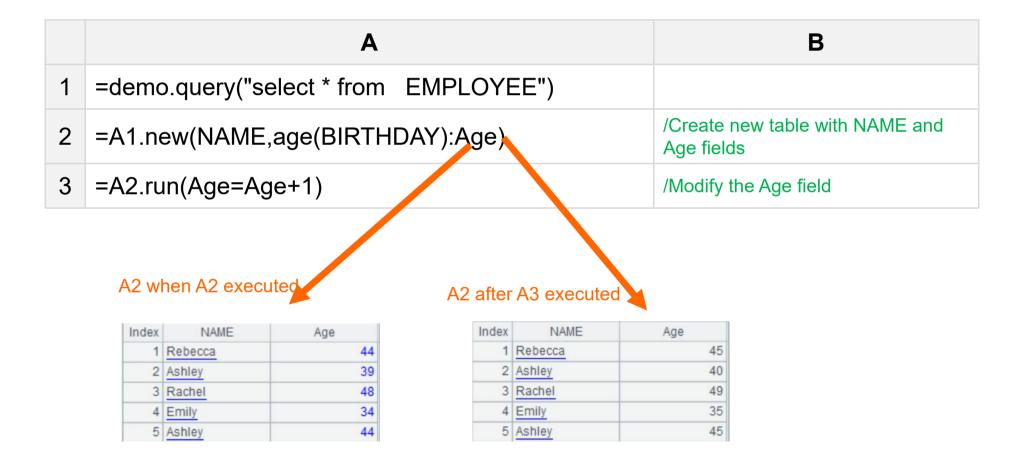
How to construct a constant table?

29

36

165

170


F

5 Zachary

6 Sophia

	Α		В			С			D	
1	Natali	e	М			44			173	
2	Jessi	ca	М			32			182	
3	Brian	na	F			26			157	
4	Emma	а	Μ			43			168	
5	Zacha	ary	F			29			165	
6	Sophi	a	F			36			170	
7	=crea	te(NAM	E,GEN	NDER,AG	E,HEI	GHT)				
8	=A7.r	ecord([A	1:D6])						
7 wh	ien A7 ex	kecuted							A8 execute	
Index	NAME	GENDER	AGE	HEIGHT		Index	NAME	GENDE		HEIGHT
							Natalie Jessica	M	44	173
							Brianna	<u>F</u>	26	157

Increase the age of all employees by 1

Data are stored in documents named after year and month by month (in the form of "201801.txt" and "201901.txt"). Now it is necessary to make statistics on all months' data and find out the documents for the required months.

	Α	B
1	=to(0,364).(date("2018-01-01")+~)	/The date sequence of one year is obtained by loop function
2	for A1	="E:/txt/file/"+string(year(A2))+string(month(A2),"00")+".txt"
3		=@ if(file(B2).exists(),B2)

A1, B3 results:

Index	Member	
1	2018-01-01	
2	2018-01-02	
3	2018-01-03	
4	2018-01-04	
5	2018-01-05	
6	2018-01-06	
7	2018-01-07	
8	2018-01-08	
9	2018-01-09	
10	2018-01-10	

Index	Member
1	E:/txt/file/20180101.txt
2	E:/txt/file/20180104.txt
3	E:/txt/file/20180106.txt
4	E:/txt/file/20180124.txt
5	E:/txt/file/20180126.txt
6	E:/txt/file/20180128.txt
7	E:/txt/file/20180129.txt
8	E:/txt/file/20180130.txt
9	E:/txt/file/20180202.txt
10	E:/txt/file/20180204.txt

	Α	В
1	=to(0,364).(date("2018-01-01")+~)	
2	=A1.("E:/txt/file/"+string(year(~))+string(month(~),"00")+".txt")	/Generate file name
3	=A2.select(file(~).exists())	/Select existing files

A1~A3 results:	

ndex	Member	
1	2018-01-01	
2	2018-01-02	
3	2018-01-03	
4	2018-01-04	
5	2018-01-05	
6	2018-01-06	
7	2018-01-07	
8	2018-01-08	
9	2018-01-09	
10	2018-01-10	

Index	Member
1	E:/txt/file/20180101.txt
2	E:/txt/file/20180102.txt
3	E:/txt/file/20180103.txt
4	E:/txt/file/20180104.txt
5	E:/txt/file/20180105.txt
6	E:/txt/file/20180106.txt
7	E:/txt/file/20180107.txt
8	E:/txt/file/20180108.txt
9	E:/txt/file/20180109.txt
10	E:/txt/file/20180110.txt

Index	Member
1	E:/bxt/file/20180101.txt
2	E:/bxt/file/20180104.bxt
3	E:/bt/file/20180106.bt
4	E:/bxt/file/20180124.bxt
5	E:/bxt/file/20180126.bxt
6	E:/bxt/file/20180128.bxt
7	E:/bxt/file/20180129.bxt
8	E:/bxt/file/20180130.txt
9	E:/bxt/file/20180202.bxt
10	E:/bxt/file/20180204.bxt

Nested loops

A table contains surnames and given names, which are now used to compose the names of the test data by Cartesian product. Please skillfully utilize ~, and get:

[Emily Smith, Alexis Smith, Ryan Smith, Emily Wilson, Alexis Wilson, Ryan Wilson, Emily Johnson, Alexis Johnson, Ryan Johnson]

NAME	SURNAME
Emily	Smith
Alexis	Wilson
Ryan	Johnson

	Α	В
1	=file("E:/txt/fullname.txt").import@t()	
2	=A1.(SURNAME)	
3	=A1.(NAME)	
4	=A3.~/" "/A2.~	/No loop
5	=A2.(A3.~/" "/A2.~)	/Loop A2
6	=A3.(A2.(A3.~/" "/A2.~))	/Loop A3
7	=A3.(A2.(A3.~/" "/~)).conj()	/Simplify and merge

				Index	Member
				1	Emily Smith
A2~A7 results:				2	Emily Wilson
				3	Emily Johnson
				4	Alexis Smith
				5	Alexis Wilson
Index Member Index Me	mber Value	Index Member	Index Member	6	Alexis Johnson
1 Smith 1 Emily	Emily Smith	1 Emily Smith	1 [Emily Smith,Emily Wilson,Emily Johnson]	7	Ryan Smith
2 Wilson 2 Alexis		2 Emily Wilson	2 [Alexis Smith, Alexis Wilson, Alexis Johnson]	8	Ryan Wilson
3 Johnson 3 Ryan		3 Emily Johnson	3 [Ryan Smith,Ryan Wilson,Ryan Johnson]	9	Ryan Johnson

Combination of names

[Emily Emily, Emily Alexis, Emily Ryan

Alexis Emily, Alexis Alexis, Alexis Ryan,

Ryan Emily, Ryan Alexis, Ryan Ryan]

	Α	В
1	=file("E:\\txt\\name.txt").import@t()	
2	=A1.(NAME)	
3	=A2.~/" "/A2.~	/No loop
4	=A2.(A2.~/" "/A2.~)	/Loop A2
5	=A2.(A2.(A2.~/" "/A2.~))	/Loop A2
6	=A2.(A2.(A2.~/" "/~)).conj()	/Simplify and merge

	0
	?
S The	

7	A2~A6 res	ulto					
í	$AZ \sim AO IES$	ouits.					
X	Member		Value	Index	Member	Index	Member
1	Emily	Emily Er	nily	1	Emily Emily	1	[Emily Emily, Alexis Alexis, Ryan Ryan]
2	Alexis			2	Alexis Alexis	2	[Emily Emily, Alexis Alexis, Ryan Ryan]
3	Ryan			3	Ryan Ryan	3	[Emily Emily, Alexis Alexis, Ryan Ryan]

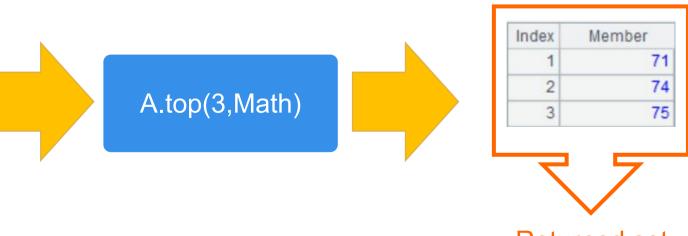
Index	Member
1	Emily Emily
2	Alexis Alexis
3	Ryan Ryan
4	Emily Emily
5	Alexis Alexis
6	Ryan Ryan
7	Emily Emily
8	Alexis Alexis
9	Ryan Ryan

	Α	В
1	=file("E:\\txt\\name.txt").import@t()	
2	=A1.(NAME)	
3	=A2.(A2.(A2.~/" "/A2.~))	/Confusing~
4	=A2.((x=A2.~,A2.(x/" "/~)))	/Introducing temporary variable x to refer to outer A1
5	=A2.((x=~,A2.(x/" "/~))).conj()	/Simplify and merge

Index	Member
1	[Emily Emily, Alexis Alexis, Ryan Ryan]
2	[Emily Emily, Alexis Alexis, Ryan Ryan]
3	[Emily Emily, Alexis Alexis, Ryan Ryan]

Index	Member
1	[Emily Emily, Emily Alexis, Emily Ryan]
2	[Alexis Emily, Alexis Alexis, Alexis Ryan]
3	[Ryan Emily,Ryan Alexis,Ryan Ryan]

Index	Member
1	Emily Emily
2	Emily Alexis
3	Emily Ryan
4	Alexis Emily
5	Alexis Alexis
6	Alexis Ryan
7	Ryan Emily
8	Ryan Alexis
9	Ryan Ryan


Understanding aggregation

Generally aggregate functions return single value (such as sum/max), but we can also allow aggregate functions to return sets, so topN can be treated as aggregate function.

Example: Look up the three lowest math scores

序号	Name	Math	Chinese	English
1	Natalie	84	90	84
2	Jessica	87	88	78
3	Brianna	89	90	75
4	Emma	88	84	94
5	Zachary	75	81	85
6	Sophia	74	86	93
7	Hannah	90	76	95
8	Christopher	71	81	86
9	Sean	98	86	81
10	Tyler	87	78	93

Returned set

TopN can also return the corresponding records (similar to maxp/minp).

Example: Check the scores of the three lowest math scores and the three highest total scores.

Score table

Index	Name	Math	Chinese	English
1	Natalie	84	90	84
2	Jessica	87	88	78
3	Brianna	89	90	75
4	Emma	88	84	94
5	Zachary	75	81	85
6	Sophia	74	86	93
7	Hannah	90	76	95
8	Christopher	71	81	86
9	Sean	98	86	81
10	Tyler	87	78	93

			Index	Name	Math	Chinese	English
			1	Christopher	71	81	86
	A.top(3;Math)		2	Sophia	74	86	93
	/		3	Zachary	75	81	85
			Index	Name	Math	Chinese	English
	A.top(3;-		1	Emma	88	84	94
/	(Math+Chinese+English))	/	2	Sean	98	86	81
			3	Hannah	90	76	95

TopN functions, as aggregation functions, can be used in grouping as sum/count.

Calculate the increase rate of each stock in the last two days.

	Α	
1	=file("E:/txt/stocknew_price1.txt").import@t()	
2	=A1.groups(stockid;top(2;-DT))	/The last two days of trading records are taken after grouping.
3	=A2.new(stockid,#2(1).CL-#2(2).CL:rises)	/Calculate the increase rate

Index	stockid	DT	CL
1	1001	2019-04-01	3.95
2	1026	2019-04-01	2.08
3	1028	2019-04-01	18.13
4	1070	2019-04-01	14.29
5	1107	2019-04-01	4.04
6	1134	2019-04-01	11.73
7	1137	2019-04-01	44.03
8	1147	2019-04-01	20.58
9	1206	2019-04-01	12.15
10	1213	2019-04-01	38.06

ndex	stockid	top(2;-DT)	Index	stockid	rises
1	1001	[[1001,2019-04-24,3.64]	1	1001	-0.359999999999999999
2	1026	[[1026,2019-04-24,2.63]	2	1026	-0.049999999999999982
3	1028	[[1028,2019-04-24,18	3	1028	-2.010000000000016
4	1070	[[1070,2019-04-24,13.	4	1070	-1.03999999999999991
5	1107	[[1107,2019-04-24,4.09	5	1107	0.349999999999999964
6	1134	[[1134,2019-04-24,10.9.	6	1134	0.310000000000005
7	1137	[[1137,2019-04-24,45.2	7	1137	2.89999999999999986
8	1147	[[1147,2019-04-24,20.5	8	1147	0.940000000000013
9	1206	[[1206,2019-04-24,13.4	9	1206	-0.5700000000000003
10	1213	[[1213,2019-04-24,38.8]	10	1213	-2.12999999999999955

Index	stockid	DT	CL
1	1001	2019-04-24	3.64
2	1001	2019-04-23	4.0

