
esProc
Innovated data
computing engine

Issued by Raqsoft

Performance optimization - Join

1 Understanding Join

2 Foreign key table

3 Main sub table and same
dimension table

4 Converting SQL subqueries into Join

Join and traditional calculation method

The definition of JOIN in SQL is very simple, that is, two sets (tables) are filtered according to some condition after Cartesian product.

Relational databases usually use HASH method to realize Join, that is, to calculate the HASH value of the related field separately, to put together the records
with the same Hash value, and then to make a small-scale traversal comparison!

…

…

…

…

…

…

…

…

B1A1 N1

Ak

HASH=1

BkNk

M1

MkHASH=k

N=N1+...+ Nk

N

A

M=M1+...+ Mk

M

B

…… …

Number of comparisons conventionally ：N*M=（N1+...+ Nk）*（M1+...+ Mk）； Number of comparisons after hash：N1*M1+N2*M2 +...+Nk*Mk
Obviously, the number of the former is generally much greater than that of the latter. （ K is the range of HASH values ）

HASH JOIN Principle in Memory ：

Join and traditional calculation method

When the two tables to JOIN are too large to fit in memory, the relational database still adopts HASH segmentation technology. According to the HASH value
of the Join field, the data is divided into several piles, each pile is small enough to be loaded in memory and then use in-memory HASH algorithm.

…

…

…

…

…

…

…

…

B1A1 N1

Ak

HASH=1

Bk
Nk

M1

Mk

N

A

M个

B

… …
write to
disk by
segment

Memory

HASH=k

…
…
Nk1

…
Nkk

Ak1

Akk

Secondary HASH
Segmentation

Read into memory

Write to
disk by
segment

HASH JOIN Principle of external storage：

HASH algorithm needs to read the
whole segment into memory when
processing each segment. In order to
reduce the number of segments, it
will make the segment as large as
possible according to the size of
memory, which will use up all memory.
The result is that the HASH JOIN
algorithm for external storage is
hard to be carried out in parallel.

Analysis of Join Operation

Common Types of Equivalent JOIN

Foreign key table

Main sub table
Same dimension table

In reality, most JOINs are equivalent JOINs. The above three JOINs have covered most of the equivalent JOINs.
By making full use of these features, simpler writing formats and more efficient computing performance can be obtained.

Analysis of Join Operation — Foreign key table

CUSTOMER

C_CUSTKEY

C_NAME

C_PHONE

C_ADDRESS

...

ORDERS

O_ORDERKEY

O_CUSTKEY

O_ORDERDATE

O_COMMENT

...

N:
1

 Some fields of Table A are associated with the primary key of Table B. Table A is called fact table

and table B is called dimension table.
1

 Foreign key table is a many-to-one relationship, mainly JOIN and LEFT JOIN, and FULL JOIN is not usually used.3

 The field associated with the primary key of table B in table A is called the foreign key of A to B, and B is also

called the foreign key table of A.
2

 Typical example: order table and customer information table4

Analysis of Join Operation — Same dimension table

MANAGER

MID

ALLOWANCE

...

...

...

EMPLOYEE

EID

NAME

SEX

SALARY

...

1:1

 The primary key of Table A is associated with the primary key of Table B. A and B are called the same dimension tables.1

 The same dimension table is a one-to-one relationship. JOIN, LEFT JOIN and FULL JOIN may happen.2

 Typical example: employee table and manager table3

Analysis of Join Operation — Main sub table

LINEITEM

L_ORDERKEY

L_NUMBER

L_PRICE

L_QUANTITY

...

ORDERS

O_ORDERKEY

O_ORDERDATE

O_CUSTKEY

O_TOTALPRICE

...

1:N

 The primary key of table A is associated with part of the primary key of table B. A is called the main table and B is

called the sub-table.
1

 The main table and sub table are one-to-many relationship, only JOIN and LEFT JOIN, there will be no FULL JOIN2

 Typical example: order table and order detail table3

1 Understanding Join

2 Foreign key table

3 Main sub table and same
dimension table

4 Converting SQL subqueries into Join

Code
example

In-memory foreign key pre-association — Foreign key attribution

Changes before and
after join between

order table and
customer tableForeign key

N:1

Foreign key attribution can be realized when data can fit into memory. Converting the foreign key customer ID in the order table into an attribute pointing
to the customer table record, that is, the value of the customer ID is already a record in a customer table, and the field of the record can be directly
referenced for calculation.

The pre-association can be reused after establishment, that is, the first step only needs to be done once, and the HASH values and comparisons need not
be calculated again when the two fields are joined in the future, which can greatly improve the performance. The JOIN operation of SQL does not assume
the uniqueness of foreign keys pointing to records, and can not use foreign key attribution method. HASH values should be calculated and compared for
every join!

A B

1 =ORDERS.switch(O_CUSTKEY,CUSTOMER:C_CUSTKEY)
/Establish foreign key pre-association to
convert customer ID into attributes

2 =A1.new(O_CUSTKEY.C_NAME:C_NAME,O_CUSTKEY,O_ORDERDATE,O_TOTALPRICE) /Query customer's order details

3 =A1.groups(O_CUSTKEY.C_CITY:C_CITY;sum(O_TOTALPRICE):O_TOTALPRICE) /Summarize order sales by customer area name

ORDERS

CUSTOMER

ORDERS

If JOIN is parsed by attributing foreign keys, all foreign keys can be pre-associated by traversing the fact table once!

In-memory foreign key pre-association — One-time parsing of multiple foreign keys

HASH JOIN algorithm can only parse one join at a time. N actions need to be performed if there are N JOINs. After each join, the intermediate results need
to be kept for the next round. The calculation process is much more complex, and the data will be traversed many times.

Changes before and after
join between order table and

customer table, and join
between order table and

employee table

Foreign key
N:1

Foreign key
N:1

Code example

A B

1 =ORDERS.switch(O_CUSTKEY,CUSTOMER:C_CUSTKEY;O_EMPID,EMPLOYEE:E_ID)
/Parse Join to convert customer ID and
employee ID into attributes

2
=A1.groups(O_CUSTKEY.C_REGION:C_REGION,O_EMPID.E_NAME:E_NAME;sum(O_
TOTALPRICE):AMOUNT)

/Summarize sales by customer region and
salesperson

ORDERS

CUSTOMER

EMPLOYEE

ORDERS

In-memory foreign key pre-association — Copy foreign key attributes

Foreign key attribution is simple and efficient, but it can not solve the situation of LEFT JOIN. When it
does not match with the record of dimension table, it will lead to the loss of foreign key of fact table.

Not only to convert foreign keys into attributes, but also to solve the LEFT JOIN situation, how to
achieve pre-association?

外键N:1

The record
that does
not match
is null

A B

1 =CUSTOMER.keys(C_CUSTKEY) /Setting primary Key as Customer ID

2 =ORDERS.join(O_CUSTKEY,A1,~:CUSTOMER_fk) /Establish pre-association

3 =A2.select(CUSTOMER_fk.C_REGION=="North China").sum(O_TOTALPRICE)
/Summarize sales of region “North
China”

Code example

CUSTOMER

ORDERS

ORDERS

ORDERS

In-memory foreign key pre-association — Multiple copied foreign key attributes

On the basis of the previous algorithm, the example of multi-field foreign key is as follows:

Foreign key
N:1

Foreign key
N:1

The record
that does
not match
is null

A B

1 =CUSTOMER.keys(C_CUSTKEY),EMPLOYEE.keys(E_ID)
/Setting primary Keys as Customer ID,
employee ID

2 =ORDERS.join(O_CUSTKEY,CUSTOMER,~:CUSTOMER_fk;O_EMPID,EMPLOYEE,~:EMPLOYEE_fk) /Establish pre-association

3
=A2.select(CUSTOMER_fk.C_REGION==“North China“ && EMPLOYEE_fk.
E_POSITION==“sales“).sum(O_TOTALPRICE)

/Summarize sales of region “North China”
of a salesperson

Code example

CUSTOMER

ORDERS

EMPLOYEE

Partial Memorized Foreign Key - Temporary Pointing Method

Fact table is too large to fit in memory, while dimension table is small (can be all put in memory). Temporary pointing can be used to process foreign keys, that is, attribute conversion of
foreign keys while reading in data.

Code example

A B
1 =file(“ORDERS.btx”).cursor@b() /Create cursor for order table records, read in data step by step

2 =A1.switch(O_CUSTKEY,CUSTOMER:C_CUSTKEY)
/Converting the customer ID field in the order table into a record of the
customer table based on the primary key of the customer table when the
data flows in

3 =A1.groups(O_CUSTKEY.C_CITY:CITY;sum(O_TOTALPRICE):AMOUNT) /Summarize the order sales according to the city

HASH value is calculated and comparison is made every time join is done, but dimension table index can be reused after establishment, and it also has the characteristics of parsing all
foreign keys at one time and easy to parallel. In actual scenarios, it still has advantages over HASH algorithm.

Create index to facilitate
searching Memory area

Read in data step by step
and make attribute

conversion 1

2

3

ORDERS CUSTOMER

Partial Memorized Foreign Key — Serialization

Variant of the previous algorithm. That is, if we can convert the primary keys of the dimension table into natural numbers starting from 1, then we can directly locate the dimension table
records with serial numbers, without calculating and comparing HASH values.

3 1

4 2

directly locate the dimension
table records with serial numbers

After serialization
After serialization

After foreign key
attribution

A B

1 =file(“ORDERS.btx”).cursor@b() /Create cursor for order table records, read in data step
by step

2 =A1.switch(O_CUSTKEY,CUSTOMER:#) /Establish foreign key join using serial numbers

3 =A1.groups(O_CUSTKEY.C_NAME:C_NAME;sum(O_TOTALPRICE):AMOUNT) /Grouping and aggregation

Foreign key serialization is essentially equivalent to attribution in external storage, and it also has the same reuse mechanism as in memory; SQL uses the concept of disordered set, even if the
foreign key is serialized beforehand, it is difficult for database to take advantage of this feature, and it still calculates HASH values and comparisons.

Code
example

5

ORDERS CUSTOMER

Code
example

Partial Memorized Foreign Key — Numbering key

Numbering is a byte-based integer used to represent key values. It locates quickly and is often used to optimize memory indexing and foreign key joins.

ID number Name

31010519730609816 Dai Li

… …

Divide 17-bit ID number into 8 layers ：31 | 01 | 05 | 1973 | 06 | 09 | 81 | 6

Bits 1-2：1-99 1 … 10 11 … 15 16 … 31 … 90 … 99 …

Bits 3-4：1-99 1 … 10 11 … 15 16 … 21 … 90 … 99 …

Bits 5-6：1-99 1 … 5 … … 15 16 … 21 … 90 … 99 …

 Bits 7,8,9,10： represent birthday year, 1970 is the benchmark here, start from 1:

1 … 3 … … 15 16 … 21 … 90 … 99 …

Layering of the remaining 7 bits, just like the above mentioned…

Change to numbering key

ID number Name

2234072400696791302 Dai Li

… …

 A

1 =file("TAX_RETURN.btx").cursor@b()

2 =file("ID_CARDS.btx").import@b().keys@i(cardNo)

3 =A1.switch(cardNo,A2:cardNo)

Another method of dealing with discontinuous
serial numbers to avoid hash calculation and
conflict.

Direct numbering requires at least 10 ^ 17
long-type spaces.

Numbering keys can numberize data layer by
layer, and many sub-nodes are empty to reduce
memory usage.

Code example

Dimension table filtering — Utilizing existing index

Foreign key
N:1

Dimension table is loaded into memory and indexed. Sometimes it is necessary to join the filtered dimension table. It is necessary to rebuild dimension table index. It is also time-
consuming to build dimension table index when dimension table is large. The index of filtered dimension table can be built by using existing dimension table index without recalculating
hash values.

A B

1 =CUSTOMER.select@i(C_CITY=="Tianjin")
/Filter the customer table and use the original
index to build the index of the filtered
customer table

2
=file(“ORDERS.ctx”).create().cursor().switch@i(O_CUSTKEY,A1:C_CUSTKE
Y)

/Attribute foreign keys and delete unrelated
records

3 =A1.groups(O_ORDERDATE;sum(O_TOTALPRICE):O_TOTALPRICE) /Summarize the sales of the order according to
the order date

After
conditional
filtering,
Create a new
index

1

Changes before and after
join between order table
and filtered customer table

2

Grouping and
aggregation3

ORDERS

CUSTOMER

ORDERS

Inner Join — Dimension table field is only used for filtering

Fact table and dimension table are joined internally, dimension table is only used for filtering. They can read data from fact table and join with filtered dimension table at the same time,
discarding records that are not related.

Code example

A B

1 =file(“ORDERS.ctx”).create().cursor() /Create cursor for order table records, read in data step by step.

2 =A1.join@i(O_CUSTKEY,CUSTOMER:C_CUSTKEY)
/When data flows in, associate the customer ID field in the order table
with the filtered customer table, and discard records that are not
associated.

3 =A2.groups(O_ORDERDATE;sum(O_TOTALPRICE):O_TOTALPRICE) /Summarize the sales of the order according to the order date.

Memory area

Step-by-step reading of
data and hashing with
dimension table

1

2

3 Join calculation, delete unrelated records.4

ORDERS CUSTOMER

Inner Join — Join and filtering when cursor is read out

When the cursor reads out, Join and filter. If the record is not associated, it no longer reads out other fields of the record. When more records are filtered out, it can significantly reduce IO
operations and improve performance.

A B

1
=file(“ORDERS.ctx”).create().cursor(;CUSTOMER.find(C_CUS
TKEY))

/Read in O_CUSTKEY first when data flows in, and join with C_CUSTKEY. Continue
to read in other fields if associated, and discard the current record otherwise.

2 =A1.groups(O_ORDERDATE;sum(O_TOTALPRICE):O_TOTALPRICE) /Summarize the sales of the order according to the order date.

✓

✘

Read in O_CUSTKEY first when data flows in, and join with C_CUSTKEY1

Memory area

Continue to read in other fields
if associated, and discard the
current record otherwise.2

✓ ✓

✓✓✓

3

Result after join

Code example

ORDERS
CUSTOMER

Inner Join — Attribution at the same time of join filtering

Fact table and dimension table are joined internally. The field of dimension table is used for filtering conditions. We can filter dimension tables first, then read in the data of fact table and
join with the filtered dimension table at the same time, discarding records that are not related.

A B

1 =file(“ORDERS.ctx”).create().cursor() /Create cursor for order table records, read in data step by step.

2 =A1.switch@i(O_CUSTKEY,CUSTOMER:C_CUSTKEY)
/When the data flows in, the customer ID field in the order table and
the filtered customer table are attributed to foreign key, and the
unrelated records are deleted.

3
=A2.groups(O_CUSTKEY.C_NAME:C_NAME;sum(O_TOTALPRICE):
O_TOTALPRICE)

/Summarize the sales of the order according to the name of the
customer company

Code example

Memory area

Read in data step by step
and convert foreign key
to attributes

1

2

3 The result after foreign key attribution4

ORDERS
CUSTOMER

Inner Join — Join filtering and Attribution when cursor is read out

A B

1 =file(“ORDERS.ctx”).create().cursor(;O_CUSTKEY:CUSTOMER)
/Read in O_CUSTKEY first when data flows in, and attribute foreign key to customer
table. Continue to read in other fields if associated, and discard the current record
otherwise.

2
=A1.groups(O_CUSTKEY.C_NAME:C_NAME;sum(O_TOTALPRICE):O_
TOTALPRICE)

/Summarize the sales of the order according to the name of the customer
company

✓

✘

Read in O_CUSTKEY first when data flows in, and join with C_CUSTKEY1

Memory area

Continue to read in other
fields if associated, and
discard the current record
otherwise.

2

✓ ✓

✓✓✓

3
Result after foreign key
attribution

Code example

When the cursor reads out, Join and filter, and then attribute. If the record is not associated, it no longer reads out other fields of the record. When more records are filtered out, it can
significantly reduce IO operations and improve performance.

ORDERS
CUSTOMER

Large dimension table

When the fact table is small (can fit in memory), and the dimension table is too large to fit in memory, JOIN can be transformed into a batch lookup problem, that is, to join with the
relevant records after the fact table joining field is found in the original dimension table.

1

2

Dimension table(Large)

Fact table(small)

Fact table(small)

Dimension table records after batch search by fact
table(small)

JOIN result

A

1 =file("RETURN.btx").import@b()

2 =file(“PRODUCT.btx”)

3 =A1.joinx@q(L_PID,A2:P_ID,P_NAME,P_TYPENAME,P_PRICE)

4 =A3.fetch()

Code example

A1：Load the return table into memory

A2：Give the file object of the product table

A3：The return table is joined with the result of Batch Search in the product table according to the return
table.

A4：Return table is joined with the reduced product table and the result is calculated.

PRODUCT

RETURN

Unilateral HASH Method

When the fact table and dimension table are too large to fit into memory, the dimension table can be read by the average segment after sorting by the primary key (HASH segment is
difficult to guarantee average). When joining, the fact table is divided into the same number of temporary files according to the value of the dimension table segment key. In each file
the dimension value corresponds to one segment of the dimension table, so we only need to read in external storage files in turn to join with the segments of dimension table. Compared
with the traditional external storage HASH JOIN, it saves the HASH partition of dimension table, and it is impossible to have secondary HASH!

Segment 1

Segment 2

Segment 33

2

1

A1：Order details cannot fit into memory, access by cursor

A2：Give the file object of the product table

A3：Join

A4：Group and aggregate sales

Code example

File 1

File 2

A
1 =file(“LINEITEM.btx”).cursor@b()
2 =file("PRODUCT.btx")
3 =A1.joinx(L_PID,A2:P_ID,P_NAME,P_PRICE)

4 =A3.groups(P_NAME;sum(P_PRICE*L_QUANTITY):AMOUNT)

File 3

Split the fact table into the same number

of external storage files according to the
dimension table segment

JOIN calculation for each section

PRODUCTLINEITEM

1 Understanding Join

2 Foreign key table

3 Main sub table and same
dimension table

4 Converting SQL subqueries into Join

Merge of same dimension table and main sub-table

When the same dimension table or the main sub-table are stored synchronized and orderly, JOIN can be implemented by merging algorithm with one traversal. The complexity is much
lower than that of the external storage segmented HASH JOIN.

Ordered by primary key

Ordered merging calculation

A B

=ORT=file("ORDERS.btx").cursor@b(),LIT=file("LINEITEM.btx").cursor@b() /Define variables

1 =joinx(ORT:ORDERS,O_ORDERKEY;LIT:LINEITEM,L_ORDERKEY) /Ordered merging join

2 =A1.groups(ORDERS.O_CUSTKEY:CUST;sum(LINEITEM.L_PRICE*LINEITEM.L_QUANTITY):AMOUNT) /Group and aggregation

Code example

Foreign key 1：N

N M

Regular traversal times：N*M
HASH JOIN ：SUM(Ni*Mi)
Ordered merging algorithm：N+M

LINEITEMORDERS

Parallel Merge — Parallel Computing

Parallel computing can significantly improve performance, but traditional HASH JOIN is difficult to achieve parallelism. Parallel HASH segments need to write data to a certain segment at the
same time, resulting in shared resource conflicts; while computing a segment will consume almost all memory, other parallel tasks can not be carried out.

Code example：

Multi threads
Thread 1

Aggregate
results

Thread 2 Thread 3 Thread 4

Single thread
computing

process

A

1 =file(“ORDERS.ctx").create().cursor@m(;;4)

2 =file(“LINEITEM.ctx").create().cursor(;;A1)

3 =joinx(A1:ORDERS,O_ORDERKEY;A2:LINEITEM,L_ORDERKEY)

4
=A3.groups(ORDERS.O_CUSTKEY:CUSTOMER;sum(LINEITEM.L
_PRICE*LINEITEM.L_QUANTITY):AMOUNT)

Segment 1

Segment 2

Segment 3

Order merging calculation

Bisection method can be used to
find sub-table segmentation points,
and then parallel algorithm is
executed.

Ordered storage is easy to achieve segmented parallelism. Keys are
ordered, so the record keys of each segment of the main table belong to a
continuous interval, and the sub-table also has this feature, which enables
efficient binary search in the sub-table to locate the segment points; that is,
data ordering ensures the rationality and efficiency of the segment.

ORDERS

LINEITEM

Parallel Merge — Generating synchronous data

When generating data, it aligns according to a certain benchmark table, which ensures the synchronization of multiple tables during segmentation, and there will be no record
misalignment when merging and calculating.

A B

1 =file(“ORDERS.txt").cursor@t(O_ORDERKEY,O_CUSTKEY,O_ORDERDATE) /Read in orders.txt

2 =A1.sortx(O_ORDERKEY) /Sort by order id

3 =file(“ORDERS.ctx").create(#O_ORDERKEY,O_CUSTKEY,O_ORDERDATE) /Create and open group table

4 =A3.append(A2) /Add records from cursor to group table

5 =file(“LINEITEM.txt").cursor@t(L_ORDERKEY,L_PRICE,L_QUANTITY) /Read in lineitem.txt

6 =A5.sortx(L_ORDERKEY) /Sort by order id

7
=file(“LINEITEM.ctx”).create(#L_ORDERKEY,L_PRICE,L_QUANTITY;L_O
RDERKEY)

/Create and open group table，segment by order id
field, records with same order id won’t be divided
to two segments

8 =A7.append(A6) /Add records from cursor to group table

Code for generating group table data to ensure main sub alignment:

Merge of main sub-table — Filter Subtable with Main Table

Code example

A B

1 =file(“ORDERS.ctx”).create().cursor(O_ORDERKEY,O_CUSTKEY,O_ORDERDATE) /Create cursor for order table

2
=file(“LINEITEM”).create().news(A1,L_PRICE,L_QUANTITY,O_CUSTKEY,
O_ORDERDATE)

/Create cursor for lineitem table through news,
with reference to customer id field of order table

3 =A1.groups(O_CUSTKEY;sum(L_PRICE*L_QUANTITY):AMOUNT) /Group and aggregate customer’s sales amount

When the main table is filtered out many records by some condition, the sub-table will still be completely traversed by joining with the method of previous page. This method will make
the sub-table traverse according to the key jump of the main table, skip the records that have been filtered out by the main table, reduce the traversal of the sub-table, and speed is
faster.

Ordered by primary key

Ordered merging calculation

Foreign key 1：N

LINEITEMORDERS

Grouping according to the primary key of the main table after join of main table and sub-table

When the main sub-table is joined, the records of the sub-table can be assembled into a subset of the main table (field values are set) to handle the operation of grouping the main table
after joining, and the aggregate operation can be written directly in the cursor.

O_CUSTKEY O_ORDERKEY

001 1

001 2

… …

ORDERS

C_CUSTKEY C_NAME

001 BABA

… …

CUSTOMER
L_ORDERKEY L_DISNO

1 867

… …

LINEITEM

Inter-table relationship diagram:

A

1 1995-03-15

2
=file(“CUSTOMER.ctx”).create().cursor@m(C_CUSTKEY,C_MKTSEGMENT;C_MKTSEGMENT==“BUILDING”).
fetch().keys@i(C_CUSTKEY)

3
=file("ORDERS.ctx").create().cursor@m(O_ORDERKEY,O_ORDERDATE,O_SHIPPRIORITY;O_ORDERDATE<
A1 && A2.find(O_CUSTKEY))

4
=file("LINEITEM.ctx").create().new(A3,O_ORDERKEY,sum(L_EXTENDEDPRICE * (1-
L_DISCOUNT)):revenue,O_ORDERDATE,O_SHIPPRIORITY;L_SHIPDATE>A1)

5 =A4.fetch().sort(revenue:-1,O_ORDERDATE)

Code example

Grouping according to the primary key of the main table after join of main table and sub-table

ORDERS

CUSTOMER

The condition is
BUILDING1

Perform primary key join
and conditional filtering
in cursor

2

Sort by revenue and order date4

LINEITEM

Join, conditional filtering,
grouping and
aggregation

3

The schematic results of the previous page are as follows:

Code example

Integrated storage of main and sub-table

Integrated storage can further improve the computing performance. Solidify the combination of
main and sub-tables in the storage format, and there is no need to join when using, so as to
achieve higher performance!

O_ID L_SUBID PRICE NUMS C_ID O_DATE

10248 VINET 2018-03-02

1024801 14.00 12

1024802 9.00 10

10249 TOMSP 2018-03-03

1024901 18.00 9

… … … … …

Combined storage

A

1 =db.cursor(“select * from ORDERS order by O_ID")

2 =db.cursor(“select * from LINEITEM order by L_ID")

3 =file("MULTIPLE.ctx").create(#O_ID,C_ID,O_DATE)

4 =A3.append(A1)

5 =A3.attach(LINEITEM,#L_SUBID,PRICE,NUMS)

6 =A5.append(A2)

Example for storage：

Building process

Query example：

A B

1 =file("MULTIPLE.ctx").create().attach(LINEITEM) /Open the attached table lineitem

2 =A1.cursor@m(O_ID,C_ID,PRICE,NUMS;;4) /Create multi-cursors, the number is 4

3 =A2.groups(C_ID:CUSTOMER;sum(PRICE*NUMS):AMOUNT) /Group and aggregate customer’s sales
amount

Time consuming（second）

2 joinx of main
and sub

Combined
storage

Combined storage
(4 threads)

781 602 368

When there are 100 million orders, each record
corresponds to about 10 order details, the actual test
results of this case are as follows:

Code example

O_ID C_ID O_DATE

10248 VINET 2018-03-02

10249 TOMSP 2018-03-03

… … …

… … …

L_ID L_SUBID PRICE NUMS

10248 1024801 14.00 12

10248 1024802 9.00 10

10249 1024901 18.00 9

… … …

ORDERS LINEITEM

Code example

Merge of same dimension table and main sub-table — Ordered and Data Updating

The premise of orderly merging is to sort historical data by primary key and store it.

The process of adding data is also orderly merging. It is still a low-cost merging calculation to merge the newly added data after it’s sorted separately and the ordered historical data
without reordering all the historical data.

Historical file Cumulative Incremental
File

Cumulative incremental data merged into historical file
Data for a period of time

Increment Added to History

A B

1 =file("ORDERS.ctx").create() /Open order file

2
=db.query@x(“select * from ORDERS where O_ORDERDATE>=’1996-07-09’ order by
O_ORDERKEY")

/Fetch new data from database

3 =A1.append(A2.cursor())
/Append incremental data to
original order table

Data update

Data is ordered by order id ORDERS

1 Understanding Join

2 Foreign key table

3 Main sub table and same
dimension table

4 Converting SQL subqueries into
Join

Converting SQL subqueries into Join — Note

Assume that the tables involved in all examples are stored orderly
by primary key

This section explains when sub-queries can be converted to JOIN.
Refer to the previous sections for JOIN optimization methods.

Join key is only for some field of the primary keys of the dimension table

For example, banking fact tables are saved as several tables (insurance main table, financial main table, etc.) according to business. The corresponding dimension tables of different
business have the same structure, so a classification field is added to synthesize these dimension tables into a large dimension table.

category business_id rate

001 1

002 1

… …

business_dim

business_id money

1 19391

… …

transaction_001
business_id money

1 86597

… …

transaction_002

Dimension table structure（category，business_id as primary keys）：category，business_id
，rate，…
The fact table contains only business_id field but no category field. The category value of
the fact main table is determined beforehand. For example, the category corresponding to
the insurance main table is 001, as shown in the right figure:

select

d.business_id, d.rate, sum(t.money) as money
from

transaction_001 as t, business_dim as d
where

d. category = ‘001’ and t. business_id = d.
business_id
group by

d.business_id, d.rate SQL

Fact main table contains only part of the fields of dimension table primary key

Optimize Idea 1: Filter the dimension table to get a new dimension table with business_id as the primary key, so that it can be joined with the fact table with business_id field. The dimension
table needs to be indexed according to business_id field when it is joined.

Foreign
key

transaction_001

business_dim

Filter by category1

Fact table joins with
the filtered result2 Group and

aggregate3

A

1 =file(“business_dim.btx”).import@b()

2 =A1.keys@i(category, business_id)

3 =A2.select(category=="001")

4
=file(“transaction_001.btx”).cursor@b(business_id,mon
ey)

5 =A4.join(business_id, A3:business_id, rate)

6 =A5.groups(business_id, rate; sum(money):money)

A

1 =file(“business_dim.btx”).import@b()

2 =A1.keys@i(category, business_id)

3
=file(“transaction_001.btx”).cursor@b(business_id,mon
ey)

4 =A3.join("001": business_id, A1, rate)

5 =A4.groups(business_id, rate; sum(money):money)

Code example

Idea 2: For a constant condition, it can be
considered as a multi-field primary key. The
fact table is joined by ["001", business_id] with
dimension table. Example is as follows:

In and Exists associated query by foreign key and dimension table

SELECT
 PS_SUPPKEY, COUNT(1) AS S_COUNT
FROM
 PARTSUPP
WHERE
 PS_PARTKEY IN (
 SELECT
 P_PARTKEY
 FROM
 PART
 WHERE
 P_NAME LIKE 'bisque%%'
)
GROUP BY PS_SUPPKEY SQL

SELECT
 PS_SUPPKEY, COUNT(1) AS S_COUNT
FROM
 PARTSUPP
WHERE
 EXISTS (
 SELECT *
FROM
PART
 WHERE
 P_PARTKEY = PS_PARTKEY
 AND P_NAME LIKE 'bisque%%'
)
GROUP BY PS_SUPPKEY

 In associated query by foreign key and dimension table1

SQL

The above examples can be converted into foreign key JOIN!

 Exists associated query by foreign key and dimension table2

PART

P_PARTKEY

P_NAME

...

...

PARTSUPP

PS_SUPPKEY

PS_PARTKEY

...

...

IN
/E
XI
ST
S

In and Exists associated query by foreign key and dimension table

Optimizing idea: Subquery is filtered, read into memory and indexed. Outer table is joined with subquery and filtered when cursor is read out. If they are not related, other fields are no longer
read out. When more records are filtered out, IO operations can be significantly reduced to improve performance.

Foreign
key

PARTSUPP

PART

Subquery conditional
filtering1

Outer table joins with
subquery filtered result2

Group and count3

Code example

A B

1
=file(“PART.ctx”).create().cursor(P_PARTKEY,P_NAME;
like(P_NAME, "bisque*"))

/Filter PART when data flows in

2 =A1.fetch().index() /Create index

3
=file(“PARTSUPP.ctx”).create().cursor(PS_SUPPKEY,
PS_PARTKEY; A2.find(P_PARTKEY))

/When data flows in, read in the PS_PARTKEY field first, and then join with the
P_PARTKEY field. If it can be related, continue to read other fields, otherwise
discard the current record.

4 =A3.groups(PS_SUPPKEY; count(1):S_COUNT) /Group and count

In and Exists associated query by main table and sub-table

SELECT
 O_ORDERPRIORITY, COUNT(*) AS O_COUNT
FROM
 ORDERS
WHERE
 O_ORDERDATE >= DATE '1995-10-01'
 AND O_ORDERDATE < DATE '1995-10-01' +
INTERVAL '3' MONTH
 AND O_ORDERKEY IN (
 SELECT
 L_ORDERKEY
 FROM
 LINEITEM
 WHERE
 L_COMMITDATE< L_RECEIPTDATE
)

GROUP BY
 O_ORDERPRIORITY SQL

SELECT
 O_ORDERPRIORITY, COUNT(*) AS O_COUNT
FROM
 ORDERS
WHERE
 O_ORDERDATE >= DATE '1995-10-01'
 AND O_ORDERDATE < DATE '1995-10-01' +
INTERVAL '3' MONTH
 AND EXISTS (
 SELECT
 *
 FROM
 LINEITEM
 WHERE
 L_ORDERKEY = O_ORDERKEY
 AND L_COMMITDATE < L_RECEIPTDATE
)
GROUP BY
 O_ORDERPRIORITY

 In associated query by main table and sub-table1

SQL

 EXISTS associated query by main table and sub-table2

ORDERS 、LINEITEM are main and sub-table. The primary key of ORDERS table is O_ORDERKEY，and the primary key of LINEITEM table are L_ORDERKEY,
L_LINENUMBER； Selected field is not logical primary key after filtering!

In and Exists associated query by main table and sub-table

A B
1 1995-10-01 =after@m(A1,3)

2
=file(“LINEITEM.btx”).cursor@b(L_ORDERKEY,L_COMMITDATE,L_RECEIP
TDATE)

/Define cursor on btx file corresponding to
LINEITEM table

3 =A2.select(L_COMMITDATE < L_RECEIPTDATE) /Add filtering operation to cursor

4 =A3.groups(L_ORDERKEY) /Deduplicate L_ORDERKEY

5
=file(“ORDERS.btx”).cursor@b(O_ORDERKEY,O_ORDERDATE,O_ORDERPRIO
RITY)

/Define cursor on btx file corresponding to order
table

6 =A5.select(O_ORDERDATE>=A1 && O_ORDERDATE < B1) /Add filtering operation to cursor

7 =A6.join@i(O_ORDERKEY, A4:L_ORDERKEY)
/Join and filter for ORDERS cursor,@i indicates
inner join

8 =A7.groups(O_ORDERPRIORITY;count(1):O_COUNT) /Calculate group for cursor to get final result

Optimizing idea: The joined field is not a logical primary key. it needs to group and deduplicate for sub-query and then join, which becomes the case similar to logical primary key!

ORDERS

LINEITEM

Filter, group and
deduplicate1

Outer table after filtering,
then join with the filtered
result of subquery

2
Group and
aggregate3

Code example

Subquery result set can fit
in memory

Main table

Sub table

In and Exists associated query by main table and sub-table

A B

1 1995-10-01 =after@m(A1,3)

2
=file(“LINEITEM.btx”).cursor@b(L_ORDERKEY,L_COMMITDATE,L_RECEIPT
DATE)

/Define cursor on btx file corresponding to
LINEITEM table

3 =A2.select(L_COMMITDATE < L_RECEIPTDATE) /Add filtering operation to cursor

4 =A3.group@1(L_ORDERKEY) /Deduplicate L_ORDERKEY

5
=file(“ORDERS.btx”).cursor@b(O_ORDERKEY,O_ORDERDATE,O_ORDERPRIOR
ITY)

/Define cursor on btx file corresponding to order
table

6 =A5.select(O_ORDERDATE>=A1 && O_ORDERDATE < B1) /Add filtering operation to cursor

7 =joinx(A6:O,O_ORDERKEY; A4:L,L_ORDERKEY) /Ordered inner join

8 =A7.groups(O.O_ORDERPRIORITY;count(1):O_COUNT) /Calculate group for cursor to get final result

Optimizing idea: On the basis of the previous page, the outer and inner tables are ordered according to the join field, which can be optimized by merging join of ordered cursor.

Main table ORDERS

LINEITEM

Filter, group and
deduplicate1

Outer table after filtering,
then orderly merge with the
result of subquery

2
Group and
aggregate3

Code example

Subquery result set can not
fit in memory

Sub table

Main and sub-table, Joined field filtered into logical primary key

SELECT
 O_ORDERPRIORITY, COUNT(*) AS O_COUNT
FROM
 ORDERS
WHERE
 O_ORDERDATE >= DATE '1995-10-01'
 AND O_ORDERDATE < DATE '1995-10-01' +
INTERVAL '3' MONTH
 AND O_ORDERKEY IN (
 SELECT
 L_ORDERKEY
 FROM
 LINEITEM
 WHERE L_LINENUMBER = 1
 L_COMMITDATE< L_RECEIPTDATE
)

GROUP BY
 O_ORDERPRIORITY SQL

 In associated query by main table and sub-table!

ORDERS and LINEITEM are the main sub-table, the primary key of ORDERS is O_ORDERKEY, and
the primary keys of LINEITEM are L_ORDERKEY and L_LINENUMBER, and the field selected by
sub-query is not logical primary key.

ORDERS

O_ORDERKEY

O_ORDERDATE

...

...

LINEITEM

L_ORDERKEY

L_LINENUMBER

...

...

IN/EXISTS

After limiting L_LINENUMBER = 1, the selected L_ORDERKEY becomes the logical primary key!

Main and sub-table, Joined field filtered into logical primary key

A B

1 1995-10-01 =after@m(A1,3)

2
=file(“LINEITEM.btx”).cursor@b(L_ORDERKEY,L_LINENUMBER,L_COMMITD
ATE,L_RECEIPTDATE)

/Define cursor on btx file corresponding to LINEITEM table

3 =A2.select(L_LINENUMBER == 1 && L_COMMITDATE < L_RECEIPTDATE) /Add filtering operation to cursor

4
=file(“ORDERS.btx”).cursor@b(O_ORDERKEY,O_ORDERDATE,O_ORDERPRIOR
ITY)

/Define cursor on btx file corresponding to order table

5 =A4.select(O_ORDERDATE>=A1 && O_ORDERDATE < B1) /Add filtering operation to cursor

6 =joinx(A5:O,O_ORDERKEY; A3:L,L_ORDERKEY) /ordered inner Join

7 =A6.groups(O.O_ORDERPRIORITY;count(1):O_COUNT) /Calculate group for cursor to get final result

Optimizing idea: The outer table and inner table (filtered into primary key) are ordered by the joined field, and can be optimized by merging join of ordered cursor!

ORDERS

LINEITEM

Become primary key
after filtering1

After filtering the outer table,
it merges with the sub-query
result in an orderly way.

2
Group and
aggregate3

Code example

Main table

Sub table

Converting SQL subqueries into Join — WHERE subquery

SELECT
 PS_SUPPKEY
FROM
 PARTSUPP
WHERE
 PS_AVAILQTY > (
 SELECT

 0.5 * SUM(L_QUANTITY)
 FROM

 LINEITEM
 WHERE

 L_PARTKEY = PS_PARTKEY
 AND L_SUPPKEY = PS_SUPPKEY
 AND L_SHIPDATE >= DATE '1995-04-01’
 AND L_SHIPDATE < DATE '1995-04-01' + INTERVAL '1'

YEAR
) SQL

 WHERE subquery example：! PARTSUPP

PS_PARTKEY

PS_SUPPKEY

PS_AVAILQTY

...

LINEITEM

L_PARTKEY

L_SUPPKEY

L_SHIPDATE

...

The LINEITEM in the sub-query is joined with the outer main
table PARTSUPP according to PARTKEY and SUPPKEY. We can
filter LINEITEM first, then aggregate a temporary table
according to PARTKEY and SUPPKEY, and then join the outer
PARTSUPP with the aggregated table.

Converting SQL subqueries into Join — WHERE subquery

A B

1 =after@y(date,1) /Get the next year of parameter date

2
=file(“LINEITEM.btx”).cursor@b(L_PARTKEY,L_SUPPKEY,L_QUANTITY,L_SHIP
DATE)

/Define cursor on btx file corresponding to LINEITEM
table

3 =A2.select(L_SHIPDATE >= date && L_SHIPDATE < A1) /Add filtering operation to cursor

4 =A3.groups@u(L_PARTKEY,L_SUPPKEY;sum(L_QUANTITY) * 0.5:quantity) /Group and aggregate, @u indicates the result set is not
ordered by the grouping filed

5 =file(“PARTSUPP.btx”).cursor@b(PS_PARTKEY,PS_SUPPKEY,PS_AVAILQTY) /Add filtering operation to cursor

6 =A5.join@i(PS_PARTKEY:PS_SUPPKEY,A4:L_PARTKEY:L_SUPPKEY,quantity) /Join and filter by PARTSUPP,@i indicates inner join

7 =A6.select(PS_AVAILQTY>quantity).fetch() /Filter the cursor to get the result

Optimizing idea: Subquery is grouped according to the joined field involved, and a temporary dimension table is calculated, then JOIN with the outer table!

Join

PARTSUPP

LINEITEM

Group and aggregate
intermediate result1

Outer table joins with
subquery intermediate result2

Filter3

Code example

Set Operations — Difference Set Operation

SELECT
 COUNT(1)
FROM
 CUSTOMER
WHERE
 NOT EXISTS (

SELECT *
FROM
 ORDERS
WHERE
 O_CUSTKEY = C_CUSTKEY

) SQL

 Find records that exist in one table but not in another: ! CUSTOMER

C_CUSTKEY

C_NAME

...

...

ORDERS

O_ORDERKEY

O_CUSTKEY

O_ORDERDATE

...

This problem can be transformed into the difference set operation of two sets!

Set Operations — Difference Set Operation

Foreign
key

CUSTOMER

ORDERS

Deduplicate O_CUSTKEY1

Outer table and sub-query
results is joined to get
difference set

2
Count number of
records3

Code example

A B

1
=file(“ORDERS.btx”).cursor@b(O_CUSTKE
Y)

/Define cursor

2 =A1.groups(O_CUSTKEY) /Deduplicate O_CUSTKEY

3
=file(“CUSTOMER.btx”).cursor@b(C_CUST
KEY)

/Define cursor

4 =A3.join@d(C_CUSTKEY,A2:O_CUSTKEY) /Join，@d indicates to get
the difference set

5 =A4.total(count(1)) /Aggregate number o f
records for cursor

 Subquery result can fit in memory1

A B

1
=file(“ORDERS.btx”).cursor@b(O_CUSTKE
Y)

/Define cursor

2 =A1.groupx(O_CUSTKEY:C_CUSTKEY) /Group and deduplicate

3
=file(“CUSTOMER.btx”).cursor@b(C_CUST
KEY)

/Define cursor

4 =[A3,A2].mergex@d(C_CUSTKEY) /Merge，@d indicates to
get the difference set

5 =A4.total(count(1)) /Aggregate number o f
records for cursor

 Subquery has a large amount of data and can not fit in memory, so

it can be merged.
2

Set Operations — Intersect Set Operation

SELECT
 O_ORDERKEY
FROM
 ORDERS
WHERE
 O_TOTALPRICE > 10000
INTERSECT
SELECT
 R_ORDERKEY
FROM
 RETURNS
GROUP BY
 R_ORDERKEY HAVING SUM(R_MONEY) < 5000 SQL

 Find orders with an amount of more than 1000 but a return of less than 5000 ! ORDERS

O_ORDERKEY

O_TOTALPRICE

O_ORDERDATE

...

RETURNS

R_RETURNNUMBER

R_ORDERKEY

R_MONEY

...

This problem can be transformed into the intersection operation of two sets!

Set Operations — Intersect Set Operation

Foreign
key

ORDERS

RETURNS
Group and
aggregate to find
records with return
less than 50001

The filtered ORDERS table is
merged with the filtered
RETURNS and intersected.

3
Count number of
records4

Code example

A B

1
=file(“RETURNS.btx”).cursor@b(R_ORDERKEY,R_M
ONEY)

/Define cursor

2
=A1.group(R_ORDERKEY:O_ORDERKEY;sum(R_MONEY):
R_MONEY).select(R_MONEY < 5000)

/Group and deduplicate

3
=file(“ORDERS.btx”).cursor@b(O_ORDERKEY,O_TO
TALPRICE).select(O_TOTALPRICE>10000)

/Define cursor

4 =[A3,A2].mergex@i(O_ORDERKEY) / M e r g e ， @ i m e a n s
intersect

5 =A4.total(count(1)) /Aggregate number of
records

Order amount greater than
100002

Same table join, EXISTS Non-Equivalent Condition

SELECT
 L_SUPPKEY, COUNT(*) AS NUMWAIT
FROM
 LINEITEM L1,
WHERE
 L1.L_RECEIPTDATE > L1.L_COMMITDATE
 AND EXISTS (
 SELECT
 *
 FROM
 LINEITEM L2
 WHERE
 L2.L_ORDERKEY = L1.L_ORDERKEY
 AND L2.L_SUPPKEY <> L1.L_SUPPKEY
)
 AND NOT EXISTS (
 SELECT
 *
 FROM
 LINEITEM L3
 WHERE
 L3.L_ORDERKEY = L1.L_ORDERKEY
 AND L3.L_SUPPKEY <> L1.L_SUPPKEY
 AND L3.L_RECEIPTDATE > L3.L_COMMITDATE
)
GROUP BY
 L_SUPPKEY SQL

LINEITEM

L_ORDERKEY

L_LINENUMBER

L_SUPPKEY

L_COMMITDATE

...

An order corresponds to multiple LINEITEM records,
which have the same L_ORDERKEY and are stored
continuously.

Optimizing idea: Find out orders with multiple suppliers
and only one supplier not delivering on time. Because
the data is stored in order of orders, orderly grouping
can be made according to orders, and each group of
order can looped to determine whether there are order
items that are not delivered on time, whether there are
multiple suppliers, and whether there are only one
supplier that did not deliver on time!

Same table join, EXISTS Non-Equivalent Condition

Inverse operation of group

LINEITEM

Construct grouped subset
cursor1

Choose an order that is not delivered on
time in each group, and return the result if
there is only one supplier and there are more
than one supplier in this group.

2

A B

1
=file(“LINEITEM.btx").cursor@b(L_ORDERKEY,L_SUPPKEY,L_REC
EIPTDATE,L_COMMITDATE)

/Define cursor on btx file corresponding to LINEITEM table

2 =A1.group(L_ORDERKEY) /Add grouping to ordered cursor

3
=A2.conj((t=~.select(L_RECEIPTDATE>L_COMMITDATE),if(t.len
()>0&&t.select@1(t(1).L_SUPPKEY!=L_SUPPKEY)==null&&~.sele
ct@1(t(1).L_SUPPKEY!=L_SUPPKEY)!= null,t,null)))

/Choose the order that is not delivered on time in each group to the
temporary variable t. If the length of t is greater than 0 and there is
only one supplier in t and there are more than one supplier in this group,
then return t. Otherwise return null, conj is equivalent to the inverse
operation of group.

4 =A3.groups@u(L_SUPPKEY;count(1):numwait) /Calculate group for cursor to get final result

Code example

Group and
aggregate3

Detailed records

Converting SQL subqueries into Join — Summary

INs described by sub-queries can be changed to EXISTS. Equivalent EXISTS is essentially a join. For SQL like select * from A where exists (select * from B where …)
， the following characteristics should be clarified:

Is the join field the primary
key or the logical primary key
of each table?

The size of tables A and B, can
they be loaded into memory after
performing other filtering
conditions?

If both tables cannot be loaded into
memory, decide whether the two tables
are ordered by the joined field.

If there is a table that fit into memory, the in-memory join method can be used. The relative SPL functions are cs.switch()、cs.join()，option @i, @d corresponds
to exists and not exists respectively.

Subquery requires that the values of the joined field be unique. If they are not logical primary keys, they must be de-duplicated first. A. groups () can be used to
de-duplicate them.

If both tables are too large to fit in memory, it is necessary to check whether the two tables are ordered by the joined field. If not ordered, cs. sortx () can be
used to sort; the ordered two tables can be joined by joinx ().

Optimizing idea ：

